Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(6): e21551, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042222

RESUMO

Intestinal epithelial cells (IEC) are crucial for maintaining proper digestion and overall homeostasis of the gut mucosa. IEC proliferation and differentiation are tightly regulated by well described pathways, however, relatively little is known about how cytokines shape these processes. Given that the anti-inflammatory cytokine interleukin (IL)-10 promotes intestinal barrier function, and insufficient IL-10 signaling increases susceptibility to intestinal diseases like inflammatory bowel disease, we hypothesized that IL-10 signaling modulates processes underlying IEC proliferation and differentiation. This was tested using in vivo and in vitro IEC-specific IL-10 receptor 1 (IL-10R1) depletion under homeostatic conditions. Our findings revealed that loss of IL-10R1 drove lineage commitment toward a dominant goblet cell phenotype while decreasing absorptive cell-related features. Diminished IL-10 signaling also significantly elevated IEC proliferation with relatively minor changes to apoptosis. Characterization of signaling pathways upstream of proliferation demonstrated a significant reduction in the Wnt inhibitor, DKK1, increased nuclear localization of ß-catenin, and increased transcripts of the proliferation marker, OLFM4, with IL-10R1 depletion. Phosphorylated STAT3 was nearly completely absent in IL-10R1 knockdown cells and may provide a mechanistic link between our observations and the regulation of these cellular processes. Our results demonstrate a novel role for IL-10 signaling in intestinal mucosal homeostasis by regulating proper balance of proliferation and IEC lineage fate.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Epiteliais/patologia , Células Caliciformes/patologia , Mucosa Intestinal/patologia , Receptores de Interleucina-10/fisiologia , Animais , Apoptose , Células Epiteliais/metabolismo , Feminino , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
2.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G531-G544, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31393789

RESUMO

Restitution of wounds in colonic epithelium is essential in the maintenance of health. Microbial products, such as the short-chain fatty acid butyrate, can have positive effects on wound healing. We used an in vitro model of T84 colonic epithelial cells to determine if the Snail genes Slug (SNAI2) and Snail (SNAI1), implemented in keratinocyte monolayer healing, are involved in butyrate-enhanced colonic epithelial wound healing. Using shRNA-mediated Slug/Snail knockdown, we found that knockdown of Slug (Slug-KD), but not Snail (Snail-KD), impairs wound healing in scratch assays with and without butyrate. Slug and Snail had differential effects on T84 monolayer barrier integrity, measured by transepithelial resistance, as Snail-KD impaired the barrier (with or without butyrate), whereas Slug-KD enhanced the barrier, again with or without butyrate. Targeted transcriptional analysis demonstrated differential expression of several tight junction genes, as well as focal adhesion genes. This included altered regulation of Annexin A2 and ITGB1 in Slug-KD, which was reflected in confocal microscopy, showing increased accumulation of B1-integrin protein in Slug-KD cells, which was previously shown to impair wound healing. Transcriptional analysis also indicated altered expression of genes associated with epithelial terminal differentiation, such that Slug-KD cells skewed toward overexpression of secretory cell pathway-associated genes. This included trefoil factors TFF1 and TFF3, which were expressed at lower than control levels in Snail-KD cells. Since TFFs can enhance the barrier in epithelial cells, this points to a potential mechanism of differential modulation by Snail genes. Although Snail genes are crucial in epithelial wound restitution, butyrate responses are mediated by other pathways as well.NEW & NOTEWORTHY Although butyrate can promote colonic mucosal healing, not all of its downstream pathways are understood. We show that the Snail genes Snail and Slug are mediators of butyrate responses. Furthermore, these genes, and Slug in particular, are necessary for efficient restitution of wounds and barriers in T84 epithelial cells even in the absence of butyrate. These effects are achieved in part through effects on regulation of ß1 integrin and cellular differentiation state.


Assuntos
Butiratos/uso terapêutico , Doenças do Colo/tratamento farmacológico , Doenças do Colo/genética , Fatores de Transcrição da Família Snail/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/efeitos dos fármacos , Proteínas de Junções Íntimas/genética , Fator Trefoil-1/biossíntese , Fator Trefoil-1/genética , Fator Trefoil-3/biossíntese , Fator Trefoil-3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA