Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 39(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28044359

RESUMO

Mitochondrial ATP synthesis, calcium buffering, and trafficking affect neuronal function and survival. Several genes implicated in mitochondrial functions map within the genomic region associated with 22q11.2 deletion syndrome (22q11DS), which is a key genetic cause of neuropsychiatric diseases. Although neuropsychiatric diseases impose a serious health and economic burden, their etiology and pathogenesis remain largely unknown because of the dearth of valid animal models and the challenges in investigating the pathophysiology in neuronal circuits. Mouse models of 22q11DS are becoming valid tools for studying human psychiatric diseases, because they have hemizygous deletions of the genes that are deleted in patients and exhibit neuronal and behavioral abnormalities consistent with neuropsychiatric disease. The deletion of some 22q11DS genes implicated in mitochondrial function leads to abnormal neuronal and synaptic function. Herein, we summarize recent findings on mitochondrial dysfunction in 22q11DS and extend those findings to the larger context of schizophrenia and other neuropsychiatric diseases.


Assuntos
Síndrome de DiGeorge/metabolismo , Proteínas Mitocondriais/genética , Plasticidade Neuronal , Esquizofrenia/genética , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia
2.
J Neurophysiol ; 109(9): 2404-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427307

RESUMO

One of the most important functions of astrocytes is removal of glutamate released during synaptic transmission. Surprisingly, the mechanisms by which astrocyte glutamate uptake is acutely modulated remain to be clarified. Astrocytes express metabotropic glutamate receptors (mGluRs) and other G protein-coupled receptors (GPCRs), which are activated during neuronal activity. Here, we test the hypothesis that astrocytic group I mGluRs acutely regulate glutamate uptake by astrocytes in situ. This hypothesis was tested in acute mouse hippocampal slices. Activation of astrocytic mGluRs, using a tetanic high-frequency stimulus (HFS) applied to Schaffer collaterals, led to potentiation of the amplitude of the synaptically evoked glutamate transporter currents (STCs) and associated charge transfer without changes in kinetics. Similar potentiation of STCs was not observed in the presence of group I mGluR antagonists or the PKC inhibitor, PKC 19-36, suggesting that HFS-induced potentiation of astrocyte glutamate uptake is astrocytic group I mGluR and PKC dependent. Pharmacological stimulation of a transgenic GPCR (MrgA1R), expressed exclusively in astrocytes, also potentiated STC amplitude and charge transfer, albeit quicker and shorter lasting compared with HFS-induced potentiation. The amplitude of the slow, inward astrocytic current due to potassium (K(+)) influx was also enhanced following activation of the endogenous mGluRs or the astrocyte-specific MrgA1 Gq GPCRs. Taken together, these findings suggest that astrocytic group I mGluR activation has a synergistic, modulatory effect on the uptake of glutamate and K(+).


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração , Potássio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais de Ação , Animais , Astrócitos/fisiologia , Estimulação Elétrica , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Proteína Quinase C/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
3.
Nat Med ; 23(1): 39-48, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27892953

RESUMO

Although 22q11.2 deletion syndrome (22q11DS) is associated with early-life behavioral abnormalities, affected individuals are also at high risk for the development of schizophrenia symptoms, including psychosis, later in life. Auditory thalamocortical (TC) projections recently emerged as a neural circuit that is specifically disrupted in mouse models of 22q11DS (hereafter referred to as 22q11DS mice), in which haploinsufficiency of the microRNA (miRNA)-processing-factor-encoding gene Dgcr8 results in the elevation of the dopamine receptor Drd2 in the auditory thalamus, an abnormal sensitivity of thalamocortical projections to antipsychotics, and an abnormal acoustic-startle response. Here we show that these auditory TC phenotypes have a delayed onset in 22q11DS mice and are associated with an age-dependent reduction of miR-338-3p, a miRNA that targets Drd2 and is enriched in the thalamus of both humans and mice. Replenishing depleted miR-338-3p in mature 22q11DS mice rescued the TC abnormalities, and deletion of Mir338 (which encodes miR-338-3p) or reduction of miR-338-3p expression mimicked the TC and behavioral deficits and eliminated the age dependence of these deficits. Therefore, miR-338-3p depletion is necessary and sufficient to disrupt auditory TC signaling in 22q11DS mice, and it may mediate the pathogenic mechanism of 22q11DS-related psychosis and control its late onset.


Assuntos
Córtex Auditivo/fisiopatologia , Vias Auditivas/fisiopatologia , Síndrome de DiGeorge/genética , MicroRNAs/genética , Transtornos Psicóticos/genética , Tálamo/fisiopatologia , Idade de Início , Animais , Antipsicóticos/farmacologia , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Vias Auditivas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Western Blotting , Síndrome de DiGeorge/fisiopatologia , Síndrome de DiGeorge/psicologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Deleção de Genes , Haploinsuficiência , Humanos , Camundongos , MicroRNAs/metabolismo , Vias Neurais , Optogenética , Técnicas de Patch-Clamp , Fenótipo , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/psicologia , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Dopamina D2/genética , Reflexo de Sobressalto , Esquizofrenia/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
4.
Sci Rep ; 6: 30757, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476972

RESUMO

A feature in patients with constitutional DNA-mismatch repair deficiency is agenesis of the corpus callosum, the cause of which has not been established. Here we report a previously unrecognized consequence of deficiency in MSH2, a protein known primarily for its function in correcting nucleotide mismatches or insertions and deletions in duplex DNA caused by errors in DNA replication or recombination. We documented that Msh2 deficiency causes dysmyelination of the axonal projections in the corpus callosum. Evoked action potentials in the myelinated corpus callosum projections of Msh2-null mice were smaller than wild-type mice, whereas unmyelinated axons showed no difference. Msh2-null mice were also impaired in locomotive activity and had an abnormal response to heat. These findings reveal a novel pathogenic consequence of MSH2 deficiency, providing a new mechanistic hint to previously recognized neurological disorders in patients with inherited DNA-mismatch repair deficiency.


Assuntos
Corpo Caloso , Reparo de Erro de Pareamento de DNA , Doenças Desmielinizantes , Potenciais Evocados , Locomoção , Proteína 2 Homóloga a MutS/deficiência , Animais , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Camundongos , Camundongos Knockout , Proteína 2 Homóloga a MutS/metabolismo
5.
Cell Calcium ; 55(1): 1-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24262208

RESUMO

Astrocyte Gq GPCR and IP3 receptor-dependent Ca(2+) elevations occur spontaneously in situ and in vivo. These events vary considerably in size, often remaining confined to small territories of astrocyte processes called "microdomains" and sometimes propagating over longer distances that can include the soma. It has remained unclear whether these events are driven by constitutive (basal) GPCR signaling activity, neuronal action potential-dependent or quantal vesicular release, or some combination of these mechanisms. Here, we applied manipulations to increase or inhibit neuronal vesicular neurotransmitter release together with low-level stimulation of Schaffer collaterals in acute mouse hippocampal slices in an effort to determine the mechanisms underlying spontaneous astrocyte Ca(2+) events. We found no significant change in spontaneous microdomain astrocyte Ca(2+) elevations when neuronal action potentials were significantly enhanced or blocked. The astrocyte Ca(2+) activity was also not affected by inhibitors of group I mGluRs. However, blockade of miniature neurotransmitter release using Bafilomycin A1 significantly reduced the frequency of microdomain astrocyte Ca(2+) elevations. We then tested whether astrocyte Ca(2+) microdomains can be evoked by low intensity SC stimulation. Importantly, microdomains could not be reproduced even using single, low intensity pulses to the SCs at a minimum distance from the astrocyte. Evoked astrocyte Ca(2+) responses most often included the cell soma, were reduced by group I mGluR antagonists, and were larger in size compared to spontaneous Ca(2+) microdomains. Overall, our findings suggest that spontaneous microdomain astrocyte Ca(2+) elevations are not driven by neuronal action potentials but require quantal release of neurotransmitter which cannot be replicated by stimulation of Schaffer collaterals.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Macrolídeos/farmacologia , Microdomínios da Membrana/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Potenciais de Ação/fisiologia , Animais , Astrócitos/citologia , Sinalização do Cálcio/fisiologia , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neurotransmissores/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA