Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(3): 907-916, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38412250

RESUMO

Viruses utilize cell surface glycans and plasma membrane receptors to attain an adequate attachment strength for initiating cellular entry. We show that SARS-CoV-2 particles bind to endogenous ACE2 receptors and added sialylated gangliosides in near-native membranes. This was explored using supported membrane bilayers (SMBs) that were formed using plasma membrane vesicles having endogenous ACE2 and GD1a gangliosides reconstituted in lipid vesicles. The virus binding rate to the SMBs is influenced by GD1a and inhibition of the ganglioside reduces the extent of virus binding to the membrane receptors. Using combinations of inhibition assays, we confirm that added GD1a in lipid membranes increases the availability of the endogenous ACE2 receptor and results in the synergistic binding of SARS-CoV-2 to the membrane receptors in SMBs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Gangliosídeos , Membrana Celular/metabolismo
2.
Biophys Rev ; 14(5): 1109-1140, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249860

RESUMO

Attachment to and fusion with cell membranes are two major steps in the replication cycle of many human viruses. We focus on these steps for three enveloped viruses, i.e., HIV-1, IAVs, and SARS-CoV-2. Viral spike proteins drive the membrane attachment and fusion of these viruses. Dynamic interactions between the spike proteins and membrane receptors trigger their specific attachment to the plasma membrane of host cells. A single virion on cell membranes can engage in binding with multiple receptors of the same or different types. Such dynamic and multivalent binding of these viruses result in an optimal attachment strength which in turn leads to their cellular entry and membrane fusion. The latter process is driven by conformational changes of the spike proteins which are also class I fusion proteins, providing the energetics of membrane tethering, bending, and fusion. These viruses exploit cellular and membrane factors in regulating the conformation changes and membrane processes. Herein, we describe the major structural and functional features of spike proteins of the enveloped viruses including highlights on their structural dynamics. The review delves into some of the case studies in the literature discussing the findings on multivalent binding, membrane hemifusion, and fusion of these viruses. The focus is on applications of biophysical tools with an emphasis on single-particle methods for evaluating mechanisms of these processes at the molecular and cellular levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA