Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166282, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600083

RESUMO

Recurrent metastatic epithelial ovarian cancer (EOC) is challenging and associated with treatment limitations, as the mechanisms governing the metastatic behavior of chemoresistant EOC cells remain elusive. Using orthotopic xenograft mouse models of sensitive and acquired platinum-taxol-resistant A2780 EOC cells, we studied the mechanistic role of insulin like growth factor 1 receptor (IGF1R) signaling in the regulation of organ-specific metastasis of EOC cells undergoing acquirement of chemoresistance. Biochemical assays and organ-specific fibroblast-EOC cell co-culture were used to study the differential metastatic characteristics of sensitive vs. chemoresistant EOC cells, and the key molecule/s underlying the organ-specific homing of chemoresistant EOC cells were identified through subtractive LC/MS profiling of the co-culture secretome. The role of the identified molecule was validated through genetic/pharmacologic perturbation experiments. Acquired chemoresistance augmented organ-specific metastasis of EOC cells and enhanced lung homing, particularly for the late-stage chemoresistant cells, which was abrogated after IGF1R silencing. Escalation of chemoresistance (intrinsic and acquired) conferred EOC cells with higher adhesion toward primary lung fibroblasts, largely governed by the α6 integrin-IGF1R dual signaling axes. Subtractive analysis of the co-culture secretome revealed that interaction with lung fibroblasts induced the secretion of S100A4 from highly resistant EOC cells, which reciprocally activated lung fibroblasts. Genetic and pharmacologic inhibition of S100A4 significantly lowered distant metastases and completely abrogated lung-tropic nature of late-stage chemoresistant EOC cells. These results indicate that chemoresistance exacerbates organ-specific metastasis of EOC cells via the IGF1R-α6 integrin-S100A4 molecular network, of which S100A4 may serve as a potential target for the treatment of recurrent metastatic EOC.


Assuntos
Carcinoma Epitelial do Ovário/tratamento farmacológico , Integrina alfa6/genética , Receptor IGF Tipo 1/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica , Paclitaxel/farmacologia , Platina/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Biomater Adv ; 143: 213153, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343390

RESUMO

Photothermal therapy (PTT) has emerged as a fast, precisive, and cost-effective anticancer therapy protocol. Here we applied our previously designed nanomaterial (Tocophotoxil) for prospective PTT application to manage radiation- and chemo-resistant cancers in a preclinical model. A PTT dose vs. efficacy relationship was established for radioresistant breast (ZR-75-1 50Gy, 4T1 20Gy) and chemo-resistant ovarian (A2780LR) cancer cells and tumors in mice models. Compared to the sensitive cases, resistant cells treated with PTT for a shorter duration show higher endurance. However, preclinical tumor xenografts treated with optimal PTT dose show 2-3 fold higher longevity (P ≤ 0.05) of treated mice monitored by non-invasive imaging methods. Elevated ERK and AKT activation in radioresistant or only AKT activation in chemo-resistant cells were contributory to higher cell survival in sub-optimal PTT dose. A comprehensive single-cell Raman map of PTT treated ZR-75-1 cell reveals broad-spectrum macromolecular deformities, including protein damage features. Marked induction of pJNK, unfolded protein response (UPR) pathway, increased reactive oxygen species (ROS), and lipid peroxidation in PTT-treated cells disrupted the intracellular homeostasis. Analyzing cellular ultrastructure, the coexistence of swollen endoplasmic reticulum, and autophagic bodies after PTT indicate possible coordination between UPR and autophagy pathways. Therefore, this comprehensive study provides new evidence on the potential impact of PTT as a standalone therapy for ablation of failed conventional therapy-resistant cancers in vivo, the success of which is intricately linked to the PTT dose optimization. The study, for the first time, also illustrates that under PTT treatment, concerted action of novel molecular switches such as JNK activation and UPR activation plays a vital role in triggering autophagy and cancer cell death.


Assuntos
Neoplasias , Terapia Fototérmica , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Estudos Prospectivos , Camundongos Endogâmicos BALB C , Neoplasias/terapia
3.
Cell Death Dis ; 12(2): 161, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558461

RESUMO

Alterations in key kinases and signaling pathways can fine-tune autophagic flux to promote the development of chemoresistance. Despite empirical evidences of strong association between enhanced autophagic flux with acquired chemoresistance, it is still not understood whether an ongoing autophagic flux is required for both initiation, as well as maintenance of chemoresistance, or is sufficient for one of the either steps. Utilizing indigenously developed cisplatin-paclitaxel-resistant models of ovarian cancer cells, we report an intriguing oscillation in chemotherapy-induced autophagic flux across stages of resistance, which was found to be specifically elevated at the early stages or onset of chemoresistance. Conversely, the sensitive cells and cells at late stages of resistance showed stalled and reduced autophagic flux. This increased flux at early stages of resistance was found to be dictated by a hyperactive ERK1/2 signaling, which when inhibited either pharmacologically (U0126/Trametinib) or genetically, reduced p62 degradation, number of LC3+veLAMP1+ve puncta, autophagolysosome formation, and led to chemo-sensitization and apoptosis. Inhibition of ERK1/2 activation also altered the level of UVRAG and Rab7, the two key proteins involved in autophagosome-lysosome fusion. Noninvasive imaging of autophagic flux using a novel autophagy sensor (mtFL-p62 fusion reporter) showed that combinatorial treatment of platinum-taxol along with Trametinib/chloroquine blocked autophagic flux in live cells and tumor xenografts. Interestingly, Trametinib was found to be equally effective in blocking autophagic flux as chloroquine both in live cells and tumor xenografts. Combinatorial treatment of Trametinib and platinum-taxol significantly reduced tumor growth. This is probably the first report of real-time monitoring of chemotherapy-induced autophagy kinetics through noninvasive bioluminescence imaging in preclinical mouse model. Altogether our data suggest that an activated ERK1/2 supports proper completion of autophagic flux at the onset of chemoresistance to endure initial chemotherapeutic insult and foster the development of a highly chemoresistant phenotype, where autophagy becomes dispensable.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Humanos , Cinética , Camundongos Nus , Proteína Quinase 3 Ativada por Mitógeno/genética , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosforilação , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Transl Oncol ; 14(11): 101193, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34365218

RESUMO

Therapy induced rewiring of signalling networks often lead to acquirement of platinum-resistance, thereby necessitating the use of non-platinum agents as second-line treatment particularly for epithelial ovarian cancer (EOC). A prior subject-specific assessment can guide the choice of optimal non-platinum agent/s and possible targeted therapeutic/s. Assessment of protein-protein interactions are superior to simple cytotoxicity assays to determine therapeutic efficacy and associated molecular responses. Utilizing improved PIP3-AKT and ERK1/2 activation Bioluminescence Resonance Energy Transfer (BRET) sensors, we report chemotherapy-induced ERK1/2 activation predominantly in cisplatin-paclitaxel resistant EOC cells and increased activation of both ERK1/2 and AKT in malignant ascites derived cancer cells from platinum-resistant patients but not from treatment-naive or platinum-sensitive relapse patients. Further, majority of the non-platinum drugs except irinotecan increased ERK1/2 activation in platinum-taxol resistant cells as observed by live-cell BRET assessment which were associated with p90RSK1/2 and BAD activation along with upregulation of multidrug transporter gene ABCC1 and cell survival genes like cyclin D1 and Bcl2. Interestingly, only irinotecan was able to sensitize these resistant cells. Altogether, this first report of BRET based sensing of molecular pathway activations in platinum resistant cell lines and patient's derived cancer cells highlight the clinical potential of BRET sensors in management of therapy resistant cancer.

5.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165754, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142859

RESUMO

Hyperactive Insulin like growth factor-1-receptor (IGF1R) signalling is associated with development of therapy resistance in many cancers. We recently reported a pulsatile nature of IGF1R during acquirement of platinum-taxol resistance in Epithelial Ovarian Cancer (EOC) cells and a therapy induced upregulation in IGF1R expression in tumors of a small cohort of high grade serous EOC patients. Here, we report Runt-related transcription factor 1 (RUNX1) as a novel transcriptional regulator which along with another known regulator Forkhead Box O3 (FOXO3a), drives the dynamic modulation of IGF1R expression during platinum-taxol resistance development in EOC cells. RUNX1-FOXO3a cooperatively bind to IGF1R promoter and produce a transcriptional surge during onset of resistance and such co-operativity falls apart when cells attain maximal resistance resulting in decreased IGF1R expression. The intriguing descending trend in IGF1R and FOXO3a expressions is caused by a Protein Kinase B (AKT)-FOXO3a negative feedback loop exclusively present in the highly resistant cells eliciting the pulsatile behaviour of IGF1R and FOXO3a. In vivo molecular imaging revealed that RUNX1 inhibition causes significant attenuation of the IGF1R promoter activity, decreased tumorigenicity and enhanced drug sensitivity of tumors of early resistant cells. Altogether our findings delineate a dynamic interplay between several molecular regulators driving pulsatile IGF1R expression and identify a new avenue for targeting EOC through RUNX1-IGF1R axis during acquirement of chemoresistance.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteína Forkhead Box O3/genética , Neoplasias Ovarianas/tratamento farmacológico , Receptor IGF Tipo 1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Methods Mol Biol ; 1790: 1-12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29858779

RESUMO

Molecular functional imaging with optical reporter genes (both bioluminescence and fluorescence) is a rapidly evolving method that allows noninvasive, sensitive, real-time monitoring of many cellular events in live cells and whole organisms. These reporter genes with optical signatures when expressed from gene-specific promoters or Cis/Trans elements mimic the endogenous expression pattern without perturbing cellular physiology. With advanced recombinant molecular biology techniques, several strategies for optimal expression from constitutive or inducible, tissue-specific and weak promoters have been developed and used for dynamic and functional imaging. In this chapter, we provide an overview of the applications of this powerful technology for imaging gene expression in living cells and rodent models.


Assuntos
Medições Luminescentes/métodos , Imagem Molecular/métodos , Neoplasias/patologia , Regiões Promotoras Genéticas , Animais , Fluorescência , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/genética
7.
Methods Mol Biol ; 1790: 13-27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29858780

RESUMO

Dual modality reporter genes are powerful means of tracking cellular processes in cell culture systems and whole animals. In this chapter, we describe the methods for construction of a plasmid reporter gene vector expressing a fluorescent and a bioluminescent gene and its validation by in vitro assays in mammalian cells as well as by noninvasive imaging methods in small animal models.


Assuntos
Medições Luminescentes/métodos , Imagem Molecular/métodos , Neoplasias/patologia , Regiões Promotoras Genéticas , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Fluorescência , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Camundongos , Camundongos Nus , NF-kappa B/genética , Neoplasias/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 6: 36612, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819360

RESUMO

Deregulated IGF-1R-AKT signaling influences multiple nodes of cancer cell physiology and assists in migration, metastasis and acquirement of radio/chemoresistance. Enrichment of cancer stem cells (CSC) positively correlates with radio/chemoresistance development in various malignancies. It is unclear though, how IGF-1R-AKT signalling shapes CSC functionality especially in ovarian cancer. Previously we showed that upregulated IGF-1R expression is essential to initiate platinum-taxol resistance at early stage which declines with elevated levels of activated AKT at late resistant stage in ovarian cancer cells. Here, we investigated the effect of this oscillatory IGF-1R-AKT signalling upon CSC functionality during generation of chemoresistance. While gradual increase in CSC properties from early (ER) to late (LR) resistant stages was observed in three different (cisplatin/paclitaxel/cisplatin-paclitaxel) cellular models created in two ovarian cancer cell lines, the stemness gene expressions (oct4/sox2/nanog) reached a plateau at early resistant stages. Inhibition of IGF-1R only at ER and AKT inhibition only at LR stages significantly abrogated the CSC phenotype. Interestingly, real time bioluminescence imaging showed CSCs of ER stages possessed faster tumorigenic potential than CSCs belonging to LR stages. Together, our data suggest that IGF-1R-AKT signalling imparts functional heterogeneity in CSCs during acquirement of chemoresistance in ovarian carcinoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA