Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Immunol ; 205(11): 3058-3070, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33087405

RESUMO

RIG-I-like receptors (RLR) are cytosolic RNA sensors that signal through the MAVS adaptor to activate IFN responses against viruses. Whether the RLR family has broader effects on host immunity against other pathogen families remains to be fully explored. In this study, we demonstrate that MDA5/MAVS signaling was essential for host resistance against pulmonary Aspergillus fumigatus challenge through the regulation of antifungal leukocyte responses in mice. Activation of MDA5/MAVS signaling was driven by dsRNA from live A. fumigatus serving as a key vitality-sensing pattern recognition receptor. Interestingly, induction of type I IFNs after A. fumigatus challenge was only partially dependent on MDA5/MAVS signaling, whereas type III IFN expression was entirely dependent on MDA5/MAVS signaling. Ultimately, type I and III IFN signaling drove the expression of CXCL10. Furthermore, the MDA5/MAVS-dependent IFN response was critical for the induction of optimal antifungal neutrophil killing of A. fumigatus spores. In conclusion, our data broaden the role of the RLR family to include a role in regulating antifungal immunity against A. fumigatus.


Assuntos
Aspergillus fumigatus/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Feminino , Interferons/imunologia , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/imunologia
2.
PLoS Pathog ; 13(4): e1006340, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28423062

RESUMO

Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is not required for pulmonary infection establishment, loss of CCR inhibits fungal metabolic plasticity and the ability to thrive in the dynamic infection microenvironment. Our results suggest a model whereby CCR in an environmental filamentous fungus is dispensable for initiation of pulmonary infection but essential for infection maintenance and disease progression. Conceptually, we argue these data provide a foundation for additional studies on fungal factors required to support fungal fitness and disease progression and term such genes and factors, DPFs (disease progression factors).


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Carbono/metabolismo , Repressão Catabólica , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes , Aspergilose/patologia , Aspergillus fumigatus/fisiologia , Progressão da Doença , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estresse Fisiológico
3.
Diabetologia ; 61(4): 942-953, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29333574

RESUMO

AIMS/HYPOTHESIS: Recent studies have identified intracellular metabolism as a fundamental determinant of macrophage function. In obesity, proinflammatory macrophages accumulate in adipose tissue and trigger chronic low-grade inflammation, that promotes the development of systemic insulin resistance, yet changes in their intracellular energy metabolism are currently unknown. We therefore set out to study metabolic signatures of adipose tissue macrophages (ATMs) in lean and obese conditions. METHODS: F4/80-positive ATMs were isolated from obese vs lean mice. High-fat feeding of wild-type mice and myeloid-specific Hif1α-/- mice was used to examine the role of hypoxia-inducible factor-1α (HIF-1α) in ATMs part of obese adipose tissue. In vitro, bone marrow-derived macrophages were co-cultured with adipose tissue explants to examine adipose tissue-induced changes in macrophage phenotypes. Transcriptome analysis, real-time flux measurements, ELISA and several other approaches were used to determine the metabolic signatures and inflammatory status of macrophages. In addition, various metabolic routes were inhibited to determine their relevance for cytokine production. RESULTS: Transcriptome analysis and extracellular flux measurements of mouse ATMs revealed unique metabolic rewiring in obesity characterised by both increased glycolysis and oxidative phosphorylation. Similar metabolic activation of CD14+ cells in obese individuals was associated with diabetes outcome. These changes were not observed in peritoneal macrophages from obese vs lean mice and did not resemble metabolic rewiring in M1-primed macrophages. Instead, metabolic activation of macrophages was dose-dependently induced by a set of adipose tissue-derived factors that could not be reduced to leptin or lactate. Using metabolic inhibitors, we identified various metabolic routes, including fatty acid oxidation, glycolysis and glutaminolysis, that contributed to cytokine release by ATMs in lean adipose tissue. Glycolysis appeared to be the main contributor to the proinflammatory trait of macrophages in obese adipose tissue. HIF-1α, a key regulator of glycolysis, nonetheless appeared to play no critical role in proinflammatory activation of ATMs during early stages of obesity. CONCLUSIONS/INTERPRETATION: Our results reveal unique metabolic activation of ATMs in obesity that promotes inflammatory cytokine release. Further understanding of metabolic programming in ATMs will most likely lead to novel therapeutic targets to curtail inflammatory responses in obesity. DATA AVAILABILITY: Microarray data of ATMs isolated from obese or lean mice have been submitted to the Gene Expression Omnibus (accession no. GSE84000).


Assuntos
Tecido Adiposo/citologia , Macrófagos/metabolismo , Obesidade/metabolismo , Ativação Metabólica , Adipócitos/metabolismo , Animais , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Oxigênio/química , Fenótipo
4.
Artigo em Inglês | MEDLINE | ID: mdl-29229641

RESUMO

Recent estimates suggest that more than 3 million people have chronic or invasive fungal infections, causing more than 600,000 deaths every year. Aspergillus fumigatus causes invasive pulmonary aspergillosis (IPA) in patients with compromised immune systems and is a primary contributor to increases in human fungal infections. Thus, the development of new clinical modalities as stand-alone or adjunctive therapy for improving IPA patient outcomes is critically needed. Here we tested the in vitro and in vivo impacts of hyperbaric oxygen (HBO) (100% oxygen, >1 atmosphere absolute [ATA]) on A. fumigatus proliferation and murine IPA outcomes. Our findings indicate that HBO reduces established fungal biofilm proliferation in vitro by over 50%. The effect of HBO under the treatment conditions was transient and fungistatic, with A. fumigatus metabolic activity rebounding within 6 h of HBO treatment being removed. In vivo, daily HBO provides a dose-dependent but modest improvement in murine IPA disease outcomes as measured by survival analysis. Intriguingly, no synergy was observed between subtherapeutic voriconazole or amphotericin B and HBO in vitro or in vivo with daily HBO dosing, though the loss of fungal superoxide dismutase genes enhanced HBO antifungal activity. Further studies are needed to optimize the HBO treatment regimen and better understand the effects of HBO on both the host and the pathogen during a pulmonary invasive fungal infection.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/patogenicidade , Oxigenoterapia Hiperbárica/métodos , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo
5.
J Infect Dis ; 213(8): 1289-98, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908736

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that plays a critical role in regulating myeloid cell host defense. In this study, we demonstrated that GM-CSF signaling plays an essential role in antifungal defense against Aspergillus fumigatus. Mice that lack the GM-CSF receptor ß chain (GM-CSFRß) developed invasive hyphal growth and exhibited impaired survival after pulmonary challenge with A. fumigatus conidia. GM-CSFRß signaling regulated the recruitment of inflammatory monocytes to infected lungs, but not the recruitment of effector neutrophils. Cell-intrinsic GM-CSFRß signaling mediated neutrophil and inflammatory monocyte antifungal activity, because lung GM-CSFRß(-/-) leukocytes exhibited impaired conidial killing compared with GM-CSFRß(+/+) counterparts in mixed bone marrow chimeric mice. GM-CSFRß(-/-) neutrophils exhibited reduced (hydrogenated) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in vivo. Conversely, administration of recombinant GM-CSF enhanced neutrophil NADPH oxidase function, conidiacidal activity, and lung fungal clearance in A. fumigatus-challenged mice. Thus, our study illustrates the functional role of GM-CSFRß signaling on lung myeloid cell responses against inhaled A. fumigatus conidia and demonstrates a benefit for systemic GM-CSF administration.


Assuntos
Antifúngicos/imunologia , Aspergilose/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Neutrófilos/imunologia , Explosão Respiratória/imunologia , Transdução de Sinais/imunologia , Animais , Aspergilose/metabolismo , Aspergillus fumigatus/imunologia , Células Cultivadas , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/imunologia
6.
PLoS Pathog ; 10(11): e1004487, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375670

RESUMO

The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Proteínas de Ligação a Elemento Regulador de Esterol , Transcriptoma , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Proteínas de Ligação a Elemento Regulador de Esterol/genética
7.
Appl Microbiol Biotechnol ; 100(11): 5029-41, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27020290

RESUMO

The filamentous fungus Aspergillus flavus is an agriculturally important opportunistic plant pathogen that produces potent carcinogenic compounds called aflatoxins. We identified the A. flavus rtfA gene, the ortholog of rtf1 in Saccharomyces cerevisiae and rtfA in Aspergillus nidulans. Interestingly, rtfA has multiple cellular roles in this mycotoxin-producing fungus. In this study, we show that rtfA regulates conidiation. The rtfA deletion mutant presented smaller conidiophores with significantly reduced conidial production compared to the wild-type strain. The absence of rtfA also resulted in a significant decrease or lack of sclerotial production under conditions that allowed abundant production of these resistance structures in the wild type. Importantly, the deletion of rtfA notably reduced the production of aflatoxin B1, indicating that rtfA is a regulator of mycotoxin biosynthesis in A. flavus. In addition, the deletion rtfA also altered the production of several unknown secondary metabolites indicating a broader regulatory scope. Furthermore, our study revealed that rtfA controls the expression of the global regulators veA and laeA, which further influence morphogenesis and secondary metabolism in A. flavus.


Assuntos
Aspergillus flavus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fatores de Alongamento de Peptídeos/genética , RNA Polimerase II/genética , Aflatoxina B1/metabolismo , Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Fúngicos , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerase II/metabolismo , Metabolismo Secundário , Esporos Fúngicos/metabolismo
8.
J Am Chem Soc ; 136(11): 4426-36, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24568283

RESUMO

Fumagillin (1), a meroterpenoid from Aspergillus fumigatus, is known for its antiangiogenic activity due to binding to human methionine aminopeptidase 2. 1 has a highly oxygenated structure containing a penta-substituted cyclohexane that is generated by oxidative cleavage of the bicyclic sesquiterpene ß-trans-bergamotene. The chemical nature, order, and biochemical mechanism of all the oxygenative tailoring reactions has remained enigmatic despite the identification of the biosynthetic gene cluster and the use of targeted-gene deletion experiments. Here, we report the identification and characterization of three oxygenases from the fumagillin biosynthetic pathway, including a multifunctional cytochrome P450 monooxygenase, a hydroxylating nonheme-iron-dependent dioxygenase, and an ABM family monooxygenase for oxidative cleavage of the polyketide moiety. Most significantly, the P450 monooxygenase is shown to catalyze successive hydroxylation, bicyclic ring-opening, and two epoxidations that generate the sesquiterpenoid core skeleton of 1. We also characterized a truncated polyketide synthase with a ketoreductase function that controls the configuration at C-5 of hydroxylated intermediates.


Assuntos
Aspergillus fumigatus/química , Cicloexanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos Insaturados/metabolismo , Terpenos/metabolismo , Aspergillus fumigatus/metabolismo , Cicloexanos/química , Ácidos Graxos Insaturados/química , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Terpenos/química
9.
J Fungi (Basel) ; 10(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38392775

RESUMO

Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. Conidiation is also influenced by osaA; both osaA deletion and overexpression resulted in a decrease in spore production. Wild-type expression levels of osaA are necessary for the expression of the conidiation regulatory genes brlA, abaA, and wetA. In addition, osaA is necessary for normal cell wall integrity. Furthermore, the deletion of osaA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, decreased thermotolerance, as well as increased sensitivity to oxidative stress. Metabolomics analysis indicated that osaA deletion or overexpression led to alterations in the production of multiple secondary metabolites, including gliotoxin. This was accompanied by changes in the expression of genes in the corresponding secondary metabolite gene clusters. These effects could be, at least in part, due to the observed reduction in the expression levels of the veA and laeA global regulators when the osaA locus was altered. Importantly, our study shows that osaA is indispensable for virulence in both neutropenic and corticosteroid-immunosuppressed mouse models.

10.
J Am Chem Soc ; 135(12): 4616-9, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23488861

RESUMO

Fumagillin 1 is a meroterpenoid from Aspergillus fumigatus that is known for its anti-angiogenic activity by binding to human methionine aminopeptidase 2. The genetic and molecular basis for biosynthesis of 1 had been an enigma despite the availability of the A. fumigatus genome sequence. Here, we report the identification and verification of the fma gene cluster, followed by characterization of the polyketide synthase and acyltransferase involved in biosynthesis of the dioic acid portion of 1. More significantly, we uncovered the elusive ß-trans-bergamotene synthase in A. fumigatus as a membrane-bound terpene cyclase.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Ácidos Graxos Insaturados/genética , Genes Fúngicos , Família Multigênica , Aspergillus fumigatus/metabolismo , Cicloexanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Sesquiterpenos/metabolismo
11.
Mol Microbiol ; 85(4): 795-814, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22783880

RESUMO

In Aspergillus nidulans the global regulatory gene veA is necessary for the biosynthesis of several secondary metabolites, including the mycotoxin sterigmatocystin (ST). In order to identify additional veA-dependent genetic elements involved in regulating ST production, we performed a mutagenesis on a deletion veA (ΔveA) strain to obtain revertant mutants (RM) that regained the capability to produce toxin. Genetic analysis and molecular characterization of one of the revertant mutants, RM3, revealed that a point mutation occurred at the coding region of the rtfA gene, encoding a RNA-pol II transcription elongation factor-like protein, similar to Saccharomyces cerevisiae Rtf1. The A. nidulans rtfA gene product accumulates in nuclei. Deletion of rtfA gene in a ΔveA background restored mycotoxin production in a medium-dependent manner. rtfA also affects the production of other metabolites including penicillin. Biosynthesis of this antibiotic decreased in the absence of rtfA. Furthermore, rtfA is necessary for normal morphological development. Deletion of the rtfA gene in wild-type strains (veA+) resulted in a slight decrease in growth rate, drastic reduction in conidiation, and complete loss of sexual development. This is the first study of an Rtf1 like gene in filamentous fungi. We found rtfA putative orthologues extensively conserved in numerous fungal species.


Assuntos
Aspergillus nidulans/citologia , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Esterigmatocistina/biossíntese , Proteína de Ligação a TATA-Box/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/crescimento & desenvolvimento , Núcleo Celular/química , Análise Mutacional de DNA , Proteínas Fúngicas/genética , Deleção de Genes , Microscopia , Dados de Sequência Molecular , Penicilinas/biossíntese , Alinhamento de Sequência , Esporos Fúngicos/crescimento & desenvolvimento , Supressão Genética , Proteína de Ligação a TATA-Box/genética
12.
Eukaryot Cell ; 11(12): 1531-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23087369

RESUMO

Invasive aspergillosis by Aspergillus fumigatus is a leading cause of infection-related mortality in immunocompromised patients. In this study, we show that veA, a major conserved regulatory gene that is unique to fungi, is necessary for normal morphogenesis in this medically relevant fungus. Although deletion of veA results in a strain with reduced conidiation, overexpression of this gene further reduced conidial production, indicating that veA has a major role as a regulator of development in A. fumigatus and that normal conidiation is only sustained in the presence of wild-type VeA levels. Furthermore, our studies revealed that veA is a positive regulator in the production of gliotoxin, a secondary metabolite known to be a virulent factor in A. fumigatus. Deletion of veA resulted in a reduction of gliotoxin production with respect to that of the wild-type control. This reduction in toxin coincided with a decrease in gliZ and gliP expression, which is necessary for gliotoxin biosynthesis. Interestingly, veA also influences protease activity in this organism. Specifically, deletion of veA resulted in a reduction of protease activity; this is the first report of a veA homolog with a role in controlling fungal hydrolytic activity. Although veA affects several cellular processes in A. fumigatus, pathogenicity studies in a neutropenic mouse infection model indicated that veA is dispensable for virulence.


Assuntos
Aspergillus fumigatus/fisiologia , Proteínas Fúngicas/metabolismo , Gliotoxina/biossíntese , Peptídeo Hidrolases/metabolismo , Esporos Fúngicos/genética , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/genética , Deleção de Genes , Gliotoxina/toxicidade
13.
Methods Mol Biol ; 2658: 17-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37024692

RESUMO

Only three classes of contemporary antifungal drugs are routinely utilized in the clinic against filamentous fungal pathogens such as Aspergillus fumigatus. High-throughput phenotypic screens to identify small molecules with activity against filamentous fungi remain challenging due to the hyphal, biofilm-like growth morphology of these important organisms. In this chapter, we describe a protocol for utilizing a bioluminescent A. fumigatus strain for identifying small molecules that potentiate the activity of the triazole antifungal drug fluconazole. The assay holds great promise for identifying small molecules with activity against filamentous fungal pathogens.


Assuntos
Antifúngicos , Aspergillus fumigatus , Antifúngicos/farmacologia , Fungos , Triazóis , Hifas , Testes de Sensibilidade Microbiana
14.
PLoS One ; 18(7): e0286271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478074

RESUMO

In fungi, conserved homeobox-domain proteins are transcriptional regulators governing development. In Aspergillus species, several homeobox-domain transcription factor genes have been identified, among them, hbxA/hbx1. For instance, in the opportunistic human pathogen Aspergillus fumigatus, hbxA is involved in conidial production and germination, as well as virulence and secondary metabolism, including production of fumigaclavines, fumiquinazolines, and chaetominine. In the agriculturally important fungus Aspergillus flavus, disruption of hbx1 results in fluffy aconidial colonies unable to produce sclerotia. hbx1 also regulates production of aflatoxins, cyclopiazonic acid and aflatrem. Furthermore, transcriptome studies revealed that hbx1 has a broad effect on the A. flavus genome, including numerous genes involved in secondary metabolism. These studies underline the importance of the HbxA/Hbx1 regulator, not only in developmental processes but also in the biosynthesis of a broad number of fungal natural products, including potential medical drugs and mycotoxins. To gain further insight into the regulatory scope of HbxA in Aspergilli, we studied its role in the model fungus Aspergillus nidulans. Our present study of the A. nidulans hbxA-dependent transcriptome revealed that more than one thousand genes are differentially expressed when this regulator was not transcribed at wild-type levels, among them numerous transcription factors, including those involved in development as well as in secondary metabolism regulation. Furthermore, our metabolomics analyses revealed that production of several secondary metabolites, some of them associated with A. nidulans hbxA-dependent gene clusters, was also altered in deletion and overexpression hbxA strains compared to the wild type, including synthesis of nidulanins A, B and D, versicolorin A, sterigmatocystin, austinol, dehydroaustinol, and three unknown novel compounds.


Assuntos
Aspergillus nidulans , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes Homeobox , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/genética
15.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333187

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening infection caused by species in the ubiquitous fungal genus Aspergillus . While leukocyte-generated reactive oxygen species (ROS) are critical for the clearance of fungal conidia from the lung and resistance to IPA, the processes that govern ROS-dependent fungal cell death remain poorly defined. Using a flow cytometric approach that monitors two independent cell death markers, an endogenous histone H2A:mRFP nuclear integrity reporter and Sytox Blue cell impermeable (live/dead) stain, we observed that loss of A. fumigatus cytochrome c ( cycA ) results in reduced susceptibility to cell death from hydrogen peroxide (H 2 O 2 ) treatment. Consistent with these observations in vitro , loss of cycA confers resistance to both NADPH-oxidase -dependent and -independent killing by host leukocytes. Fungal ROS resistance is partly mediated in part by Bir1, a homolog to survivin in humans, as Bir1 overexpression results in decreased ROS-induced conidial cell death and reduced killing by innate immune cells in vivo . We further report that overexpression of the Bir1 N-terminal BIR domain in A. fumigatus conidia results in altered expression of metabolic genes that functionally converge on mitochondrial function and cytochrome c ( cycA ) activity. Together, these studies demonstrate that cycA in A. fumigatus contributes to cell death responses that are induced by exogenous H 2 O 2 and by host leukocytes. Importance: Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk of IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with Chronic Granulomatous Disease (CGD). However, treatments for Aspergillus infections remains limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization (WHO) classified A. fumigatus as a critical priority fungal pathogen. Our research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.

16.
mSphere ; 8(6): e0030523, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823656

RESUMO

IMPORTANCE: Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk for IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with chronic granulomatous disease (CGD). However, treatments for Aspergillus infections remain limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization classified A. fumigatus as a critical priority fungal pathogen. Our cell death research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.


Assuntos
Aspergillus fumigatus , Aspergilose Pulmonar Invasiva , Animais , Humanos , Aspergillus fumigatus/metabolismo , Citocromos c/metabolismo , Esporos Fúngicos , Imunidade Esterilizante , Virulência , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , Mamíferos
17.
Fungal Genet Biol ; 49(2): 141-51, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22227160

RESUMO

Fungi possess genetic systems to regulate the expression of genes involved in complex processes such as development and secondary metabolite biosynthesis. The product of the velvet gene veA, first identified and characterized in Aspergillus nidulans, is a key player in the regulation of both of these processes. Since its discovery and characterization in many Aspergillus species, VeA has been found to have similar functions in other fungi, including the Dothideomycete Mycosphaerella graminicola. Another Dothideomycete, Dothistroma septosporum, is a pine needle pathogen that produces dothistromin, a polyketide toxin very closely related to aflatoxin (AF) and sterigmatocystin (ST) synthesized by Aspergillus spp. Dothistromin is unusual in that, unlike most other secondary metabolites, it is produced mainly during the early exponential growth phase in culture. It was therefore of interest to determine whether the regulation of dothistromin production in D. septosporum differs from the regulation of AF/ST in Aspergillus spp. To begin to address this question, a veA ortholog was identified and its function analyzed in D. septosporum. Inactivation of the veA gene resulted in reduced dothistromin production and a corresponding decrease in expression of dothistromin biosynthetic genes. Expression of other putative secondary metabolite genes in D. septosporum such as polyketide synthases and non-ribosomal peptide synthases showed a range of different responses to loss of Ds-veA. Asexual sporulation was also significantly reduced in the mutants, accompanied by a reduction in the expression of a putative stuA regulatory gene. The mutants were, however, able to infect Pinus radiata seedlings and complete their life cycle under laboratory conditions. Overall this work suggests that D. septosporum has a veA ortholog that is involved in the control of both developmental and secondary metabolite biosynthetic pathways.


Assuntos
Antraquinonas/metabolismo , Ascomicetos/metabolismo , Genes Reguladores/genética , Pinus/microbiologia , Esporos/crescimento & desenvolvimento , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Mutação , Peptídeo Sintases/metabolismo , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Esporos/metabolismo
18.
J Bacteriol ; 193(16): 4199-213, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21705586

RESUMO

Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second ß-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.


Assuntos
Bacillus megaterium/classificação , Bacillus megaterium/genética , Genoma Bacteriano , Bacillus megaterium/metabolismo , Cromossomos Bacterianos , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Variação Genética , Dados de Sequência Molecular , Filogenia , Plasmídeos , Especificidade da Espécie
20.
Fungal Genet Biol ; 46(6-7): 506-15, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19318129

RESUMO

In eukaryotes, the principal nuclear import pathway is driven by the importin alpha/beta1 heterodimer. KapA, the Aspergillus nidulans importin alpha, is an essential protein. We generated a conditional allele, kapA31, mimicking the srp1-31 allele in Saccharomyces cerevisiae. KapA31 carries a Ser111Phe amino acid substitution which, at the restrictive temperature of 42 degrees C, reduces nuclear import of cargos containing classical nuclear-localization-sequences, cNLS. Using kapA31, we have demonstrated the role of the importin alpha in the nuclear accumulation of the light-dependent developmental regulator VeA. KapA have additional tasks in the cell, as reported for other members of the importin alpha family. KapA participates at different regulatory stages of asexual and sexual development, being required for the completion of both reproductive cycles with the formation of conidiospores and ascospores, respectively. Finally, KapA also mediates in different pathways of secondary metabolism having a dual role: positively for penicillin production and negatively for mycotoxin biosynthesis.


Assuntos
Transporte Ativo do Núcleo Celular , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/química , Aspergillus nidulans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Reprodução Assexuada , Alinhamento de Sequência , alfa Carioferinas/química , alfa Carioferinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA