Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Astron Astrophys ; 6302019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32699429

RESUMO

CONTEXT: Pre-equinox measurements of comet 67P/Churyumov-Gerasimenko with the mass spectrometer ROSINA/DFMS on board the Rosetta spacecraft revealed a strongly heterogeneous coma. The abundances of major and various minor volatile species were found to depend on the latitude and longitude of the nadir point of the spacecraft. The observed time variability of coma species remained consistent for about three months up to equinox. The chemical variability could be generally interpreted in terms of surface temperature and seasonal effects superposed on some kind of chemical heterogeneity of the nucleus. AIMS: We compare here pre-equinox (inbound) ROSINA/DFMS measurements from 2014 to measurements taken after the outbound equinox in 2016, both at heliocentric distances larger than 3 AU. For a direct comparison we limit our observations to the southern hemisphere. METHODS: We report the similarities and differences in the concentrations and time variability of neutral species under similar insolation conditions (heliocentric distance and season) pre- and post-equinox, and interpret them in light of the previously published observations. In addition, we extend both the pre- and post-equinox analysis by comparing species concentrations with a mixture of CO2 and H2O. RESULTS: Our results show significant changes in the abundances of neutral species in the coma from pre- to post-equinox that are indicative of seasonally driven nucleus heterogeneity. CONCLUSIONS: The observed pre- and post-equinox patterns can generally be explained by the strong erosion in the southern hemisphere that moves volatile-rich layers near the surface.

2.
J Geophys Res Space Phys ; 121(1): 804-816, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27134807

RESUMO

Observations of the green and red-doublet emission lines have previously been realized for several comets. We present here a chemistry-emission coupled model to study the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines of interest for comet 67P/Churyumov-Gerasimenko. The recent discovery of O2 in significant abundance relative to water 3.80 ± 0.85% within the coma of 67P has been taken into consideration for the first time in such models. We evaluate the effect of the presence of O2 on the green to red-doublet emission intensity ratio, which is traditionally used to assess the CO2 abundance within cometary atmospheres. Model simulations, solving the continuity equation with transport, show that not taking O2 into account leads to an underestimation of the CO2 abundance within 67P, with a relative error of about 25%. This strongly suggests that the green to red-doublet emission intensity ratio alone is not a proper tool for determining the CO2 abundance, as previously suggested. Indeed, there is no compelling reason why O2 would not be a common cometary volatile, making revision of earlier assessments regarding the CO2 abundance in cometary atmospheres necessary. The large uncertainties of the CO2 photodissociation cross section imply that more studies are required in order to better constrain the O(1S) and O(1D) production through this mechanism. Space weather phenomena, such as powerful solar flares, could be used as tools for doing so, providing additional information on a good estimation of the O2 abundance within cometary atmospheres.

3.
Science ; 348(6231): 232-5, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25791084

RESUMO

Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of (5.70 ± 0.66) × 10(-3) (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.

4.
Anal Chem ; 78(24): 8319-23, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17165822

RESUMO

This paper focuses on the evaluation of the treatment related to chemical and morphological changes of corroded lead artifacts when using electrolytic reduction as a stabilization method. Synchrotron radiation X-ray diffraction and X-ray photoelectron spectroscopy were used to study the chemical changes of the corrosion layer and on the top nanometer of surface, respectively. Neutron tomography and scanning electron microscopy were used to visualize potential morphological changes on millimeter and micrometer level, respectively. The results of this study have shown that electrolytic reduction is a reliable way to stabilize and conserve active corroded lead artifacts. The corrosion products are actually converted into metallic lead, while the morphological changes due to the treatment are limited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA