RESUMO
BACKGROUND: Myofibroblast differentiation and extracellular matrix (ECM) deposition are observed in chronic obstructive pulmonary disease (COPD). However, the mechanisms of regulation of myofibroblast differentiation remain unclear. MATERIALS AND METHODS: We detected let-7 levels in peripheral lung tissues, serum and primary bronchial epithelial cells of COPD patients and cigarette smoke (CS)-exposed mice. IL-6 mRNA was explored in lung tissues of COPD patients and CS-exposed mice. IL-6 protein was detected in cell supernatant from primary epithelial cells by ELISA. We confirmed the regulatory effect of let-7 on IL-6 by luciferase reporter assay. Western blotting assay was used to determine the expression of α-SMA, E-cadherin and collagen I. In vitro, cell study was performed to demonstrate the role of let-7 in myofibroblast differentiation and ECM deposition. RESULTS: Low expression of let-7 was observed in COPD patients, CS-exposed mice and CS extract (CSE)-treated human bronchial epithelial (HBE) cells. Increased IL-6 was found in COPD patients, CS-exposed mice and CSE-treated HBE cells. Let-7 targets and silences IL-6 protein coding genes through binding to 3' untranslated region (UTR) of IL-6. Normal or CSE-treated HBE cells were co-cultured with human embryonic lung fibroblasts (MRC-5 cells). Reduction of let-7 in HBE cells caused myofibroblast differentiation and ECM deposition, while increase of let-7 mimics decreased myofibroblast differentiation phenotype and ECM deposition. CONCLUSION: We demonstrate that CS reduced let-7 expression in COPD and, further, identify let-7 as a regulator of myofibroblast differentiation through the regulation of IL-6, which has potential value for diagnosis and treatment of COPD.
Assuntos
Remodelação das Vias Aéreas/genética , Células Epiteliais/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , Miofibroblastos/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Actinas/metabolismo , Adulto , Idoso , Animais , Caderinas/metabolismo , Diferenciação Celular/genética , Fumar Cigarros , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Mensageiro/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Fumaça , Produtos do TabacoRESUMO
BACKGROUND: Establishment of a mouse model is important for investigating the mechanism of chronic obstructive pulmonary disease (COPD). In this study, we observed and compared the evolution of the pathology in two mouse models of COPD induced by cigarette smoke (CS) exposure alone or in combination with lipopolysaccharide (LPS). METHODS: One hundred eight wild-type C57BL/6 mice were equally divided into three groups: the (1) control group, (2) CS-exposed group (CS group), and (3) CS + LPS-exposed group (CS + LPS group). The body weight of the mice was recorded, and noninvasive lung function tests were performed monthly. Inflammation was evaluated by counting the number of inflammatory cells in bronchoalveolar lavage fluid and measuring the expression of the IL-6 mRNA in mouse lung tissue. Changes in pathology were assessed by performing hematoxylin and eosin and Masson staining of lung tissue sections. RESULTS: The two treatments induced emphysema and airway remodeling and decreased lung function. Emphysema was induced after 1 month of exposure to CS or CS + LPS, while airway remodeling was induced after 2 months of exposure to CS + LPS and 3 months of exposure to CS. Moreover, the mice in the CS + LPS group exhibited more severe inflammation and airway remodeling than the mice in the CS group, but the two treatments induced similar levels of emphysema. CONCLUSION: Compared with the single CS exposure method, the CS + LPS exposure method is a more suitable model of COPD in airway remodeling research. Conversely, the CS exposure method is a more suitable model of COPD for emphysema research due to its simple operation.
Assuntos
Remodelação das Vias Aéreas , Modelos Animais de Doenças , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/fisiopatologia , Animais , Fumar Cigarros , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/etiologiaRESUMO
Dopaminergic (DAergic) neurons of the midbrain ventral tegmental area (VTA) are known to regulate the hypothalamic-pituitary-adrenal (HPA) axis but have no direct projections to the paraventricular nucleus (PVN) of the hypothalamus. This study investigated whether VTA DAergic afferents modulate glutamatergic transmission-dependent GABAergic neurons in dorsolateral bed nucleus of stria terminalis (dlBNST) to affect the activity of the HPA-axis. Herein, we demonstrate that systemic administration of the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or the VTA-injection of 1-methyl-4-phenylpyridinium ion (MPP+) in male mice (MPTP-mice and MPP+mice) caused a decline of tyrosine hydroxylase positive (TH+) cells in VTA with a reduction in TH+fibers in the dlBNST. MPTP-mice and MPP+mice displayed a clear increase in serum levels of corticosterone (CORT) and adrenocorticotropic hormone, corticotropin-releasing hormone (CRH) expression, and CRH neuron activity in PVN. The presynaptic glutamate release, glutamatergic synaptic transmission and induction of long-term potentiation in dlBNST of MPTP-mice were suppressed, and these effects were rescued by a D1-like DAergic receptor (D1R) agonist and mimicked in control dlBNST by blockade of D1R. MPTP-mice exhibited low expression of glutamic acid decarboxylase and dysfunction of the excitatory-dependent GABAergic circuit in dlBNST, and these effects were recovered by the administration of D1R agonist. Furthermore, either dlBNST-injection of D1R agonist or PVN-injection of GABAA receptor (GABAA R) agonist could correct the increased secretion and expression of CRH in MPTP-mice. The results indicate that the DAergic afferents from VTA enhance excitatory-dependent activation of GABAergic neurons in dlBNST, which suppress the activity of the HPA-axis.
Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Vias Neurais/metabolismo , Neurônios Aferentes/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Congenital generalized lipodystrophy 2 (CGL2) is characterized by loss of adipose tissue, insulin resistance and cognitive deficits and caused by mutation of BSCL2/seipin gene. Seipin deletion in mice and rats causes severe lipodystrophy, insulin resistance, and cognitive impairment. Hippocampal neurons express seipin protein. This study aimed to investigate the influence of systemic seipin knockout (seipin-sKO), neuronal seipin knockout (seipin-nKO) or adipose seipin knockout (seipin-aKO) in hippocampal tau phosphorylation and aggregation. Levels of tau phosphorylation at Thr212/Ser214 and Ser202/Thr205 and oligomer tau protein were increased in seipin-sKO mice and seipin-nKO mice with a decrease in axonal density and expression of PPARγ. Neuronal seipin deletion increased activities of GSK3ß and Akt/mTOR signaling, which were corrected by the administration of PPARγ agonist rosiglitazone for 7â¯days. The autophagosome formation was reduced in seipin-sKO mice and seipin-nKO mice, which was rescued by the Akt and mTOR inhibitors. The administration of rosiglitazone or Akt, mTOR and GSK3ß inhibitors for 7â¯days could correct the hyperphosphorylation and aggregation of tau. On the other hand, seipin-sKO mice appeared insulin resistance and an increase in phosphorylation of tau at Ser396 and JNK, which were corrected by treatment with rosiglitazone for 30â¯days rather than 7â¯days. Inhibition of JNK in seipin-sKO mice corrected the hyperphosphorylated tau at Ser396. The results indicate that neuronal seipin deletion causes hyperphosphorylation and aggregation of tau protein leading to axonal atrophy through reduced PPARγ to enhance GSK3ß and Akt/mTOR signaling; systemic seipin deletion-induced insulin resistance causes tau hyperphosphorylation via cascading JNK pathway.
Assuntos
Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Resistência à Insulina/fisiologia , Neurônios/metabolismo , PPAR gama/metabolismo , Proteínas tau/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Subunidades gama da Proteína de Ligação ao GTP/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Knockout , Neurônios/patologia , PPAR gama/genética , Fosforilação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
Therapies treating psoriasis can be categorized into five classes according to their mechanism: anti-metabolites (AM), anti-interleukin-12/23 agents (anti-IL12/23), anti-interleukin-17 agents (anti-IL17), anti-T-cell agent (ANT), and anti-tumor necrosis factor-α agent (anti-TNF-α). This network meta-analysis (NMA) aimed to give a quantitative and systemic evaluation of safety and efficacy for the five kinds of therapies mentioned above. Odds ratios and mean differences were calculated to evaluate binary and continuous outcomes, respectively. Forest plots were conducted to show the performance of pair-wise comparison of above therapies in each outcome, and surface under the cumulative ranking curves was given to evaluate the relative ranking of above therapies in each outcome. Node splitting was conducted to evaluate the consistency between direct and indirect evidence. Direct comparisons from 65 studies (32,352 patients) were included in this NMA. Our results showed an excellent efficacy of anti-IL12/23 and anti-IL17. However, these two therapies and anti-TNF-α were revealed to have a high possibility to cause adverse effects (AEs) such as infections. Additionally, node splitting showed that no inconsistency appeared between the direct and indirect comparisons. Anti-IL12/23 was the most recommended therapy according to this NMA. Anti-IL17 had similar efficacy to anti-IL12/23 but should be applied with caution since it has poor performance in safety outcomes.
Assuntos
Metanálise em Rede , Psoríase/terapia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Índice de Gravidade de Doença , Resultado do TratamentoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Neutrophil extracellular trap (NET) formation plays a crucial role in wound healing disorders, including chronic skin ulcers and diabetic foot ulcers (DFUs). Over the years, traditional Chinese topical medications, such as Cinnabar (composed of HgS and soluble mercury salt) and hydrargyria oxydum rubrum (containing HgO and soluble mercury salt), have been utilized for treating these ailments. Nevertheless, the fundamental processes remain mostly ambiguous. AIM OF THE STUDY: This study sought to investigate the potential effects of topical mercury-containing preparations on the process of NET formation. MATERIALS AND METHODS: Neutrophils isolated from healthy individuals and mouse models of type 1 and type 2 diabetes were cultured with phorbol 12-myristate 13-acetate (PMA), both with and without the mercury-containing preparations (MCP). The formation of NETs was monitored using confocal and scanning electron microscopes. Immunofluorescence and fluorescent probes were employed to assess the levels of citrulline histone H3 (Cit-H3) and intracellular reactive oxygen species (ROS), respectively. The impact of MCP extracts on cytokine expression, peptidylarginine deiminase 4 (PAD4), and myeloperoxidase (MPO) was measured through Luminex and ELISA assays. Phagocytosis of human neutrophils was analyzed using Flow Cytometry. Finally, the phosphorylation levels of ERK were detected by western blotting. RESULTS: Treatment with MCP led to a reduction in PAD4, Cit-H3, and MPO expressions in neutrophils, consequently inhibiting PMA-induced NET formation. MCP treatment also dampened ERK1/2 activation in neutrophils. Furthermore, MCP exhibited inhibitory effects on the secretion of the cytokine IL-8 and ROS production while enhancing neutrophil phagocytosis. CONCLUSION: Our findings suggest that MCP can mitigate the release of NETs, likely by suppressing the ERK1/2 signaling pathway.
Assuntos
Diabetes Mellitus Tipo 2 , Armadilhas Extracelulares , Mercúrio , Humanos , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neutrófilos , Citocinas/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The inflammatory skin condition psoriasis is immune-related. The decoction of Jianpi-Yangxue-Jiiedu (JPYX) is a useful medication for psoriasis. However, the underlying mechanics of JPYX have not yet been clarified. AIM OF THE STUDY: The objective of this study was to investigate the mechanism underlying the efficacy of JPYX in the treatment of psoriasis in the context of a high-fat diet. MATERIALS AND METHODS: This work generated a high-fat feeding model of imiquimod (IMQ)-induced psoriasis-like lesion mice. The blood composition of JPYX was examined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The mechanism of JPYX decoction for treating psoriasis was predicted using methods of network pharmacology, metabolomics, and transcriptomics. RESULTS: JPYX prevented the release of inflammatory cytokines, decreased keratinocyte proliferation, enhanced the percentage of Treg cells in the skin, lymph nodes, and thymus, and greatly alleviated psoriatic lesions. Network pharmacology predicted that IL-1ß, TNF, STAT3, and EGFR may be potential targets, and KEGG results showed that PI3K-AKT-mTOR may be a potential mechanism of action. Verification of experimental data demonstrated that the JPYX decoction dramatically decreased mTOR and AKT phosphorylation. According to metabolomics analysis, amino acids and their metabolites, benzene and its substitutes, aldehyde ketone esters, heterocyclic compounds, etc. were the primary metabolites regulated by JPYX. KEGG enrichment analysis of differential metabolites was performed. Fatty acid biosynthesis, Type I polyketide structures, Steroid hormone biosynthesis, Biosynthesis of unsaturated fatty acid, etc. Transcriptomic results showed that JPYX significantly regulated skin development, keratinocyte differentiation, and oxidative phosphorylation. Further experimental data verification showed that JPYX decoction significantly reduced the mRNA levels of mt-Nd4, mt-Nd5, mt-Nd1, Ifi205, Ifi211, and mt-Atp8. CONCLUSIONS: JPYX may improve psoriasis by regulating the metabolic pathways of fatty acids and electron transport of oxidative phosphorylation.
Assuntos
Medicamentos de Ervas Chinesas , Psoríase , Animais , Camundongos , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte de Elétrons , Fosfatidilinositol 3-Quinases/metabolismo , Cromatografia Líquida , Elétrons , Espectrometria de Massas em Tandem , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversosRESUMO
The long-term and excessive use of glyphosate (GLY) in diverse matrices has caused serious hazard to the human and environment. However, the ultrasensitive detection of GLY still remains challenging. In this study, the smartphone-assisted dual-signal mode ratiometric fluorescent and paper sensors based on the red-emissive gold nanoclusters (R-AuNCs) and blue-emissive carbon dots (B-CDs) were ingeniously designed accurate and sensitive detection of GLY. Upon the presence of GLY, it would quench the fluorescence of B-CDs through dynamic quenching effect, and strengthen the fluorescence response of R-AuNCs due to aggregation-induced enhancement effect. Through calculating the GLY-induced fluorescence intensity ratio of B-CDs to R-AuNCs by using a fluorescence spectrophotometer, low to 0.218 µg/mL of GLY could be detected in lab in a wide concentration range of 0.3-12 µg/mL with high recovery of 94.7-103.1% in the spiked malt samples. The smartphone-assisted ratiometric fluorescent sensor achieved in the 96-well plate could monitor 0-11 µg/mL of GLY with satisfactory recovery of 94.1-107.0% in real edible malt matrices for high-throughput analysis. In addition, a portable smartphone-assisted ratiometric paper sensor established through directly depositing the combined B-CDs/R-AuNCs probes on the test strip could realize on-site measurement of 2-8 µg/mL of GLY with good linear relationship. This study provides new insights into developing the dual-signal ratiometric sensing platforms for the in-lab sensitive detection, high-throughput analysis, and on-site portable measurement of more trace contaminants in foods, clinical and environmental samples.
Assuntos
Contaminação de Alimentos , Glicina , Glifosato , Herbicidas , Smartphone , Glicina/análogos & derivados , Glicina/análise , Contaminação de Alimentos/análise , Herbicidas/análise , Espectrometria de Fluorescência/métodos , Papel , Pontos Quânticos/química , Ouro/química , Nanopartículas Metálicas/química , Fluorescência , Grão Comestível/química , Limite de DetecçãoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Qing-Re-Chu-Shi Decoction (QRCSD), a traditional Chinese herbal formula, has been employed as a complementary and alternative therapy for inflammatory skin diseases. However, its active constituents and the mechanistic basis of its action on atopic dermatitis remain in adequately understood. AIM OF THE STUDY: Atopic dermatitis (AD) is an allergic dermatitis marked by eczematous lesions and pruritus. The study aimed to elucidate the underlying effects of QRCSD on AD and to identify the components responsible for its therapeutic efficacy in a mouse model. MATERIALS AND METHODS: Network pharmacology and UPLC-mass analysis were used to anticipate the pharmacological mechanisms and to identify active components of QRCSD, respectively. A DNCB-induced AD-like model was established in NC/Nga mice. QRCSD or prednisolone (as a positive control) was administered via gavage every other day from day14 to day 21. Dermatitis severity score, scratching behavior, skin barrier function, spleen index, Th1/Th2 lymphocyte ratio, and serum IgE levels were evaluated. Protein arrays, including 40 inflammatory cytokines, were performed on skin lesions, followed by confirmation experiments of Western blotting in dorsal skin lesions. RESULTS: The construction of a QRCSD-AD-Network and topological analysis firstly proposed potential targets of QRCSD acting on AD. Animal experiments demonstrated that oral administration of QRCSD ameliorated AD-like lesions, reduced epidermal thickness and mast cell count, decreased serum IgE levels, augmented tight junction protein (Claudin 1, Occludin) levels, and regulated the Th1/Th2 balance in the spleen, as well as spleen index. Elevated levels of interleukin (IL)-4, IL-5, IL-6, IL-17, and Eotaxin were revealed in AD-like skin lesions by protein arrays. Western blotting confirmed that the phosphorylation levels of ERK, P38, JNK, STAT3 and P65 were downregulated, and IL-6 expression was also reduced following QRCSD treatment. CONCLUSIONS: The study enhances the understanding of the anti-inflammatory and immunomodulatory effects of QRCSD, showcasing its significant protective role against atopic dermatitis. Treatment with QRCSD may be considered as a viable candidate for complementary and alternative therapy in managing atopic dermatitis.
Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Pele/patologia , Interleucina-6/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/efeitos adversos , Imunoglobulina ERESUMO
SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.
Assuntos
Aminoácidos de Cadeia Ramificada , Dieta Hiperlipídica , Obesidade , Psoríase , Transaminases , Animais , Masculino , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Imiquimode , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/complicações , PPAR gama/metabolismo , PPAR gama/genética , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Pele/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transaminases/metabolismoRESUMO
Background: At present, acupuncture-related practices have been widely used to treat psoriasis. In our study, we investigated the effect and explored the mechanism of electroacupuncture (EA) on acupoints Baihui (DU20) and Xuehai (SP10) for the treatment of psoriasis. Methods: Imiquimod-induced psoriasis-like mouse model was used in this study. Mice were treated with electroacupuncture at DU20 and SP10 (depth of 2-3 mm, frequency of 2/15 Hz, intensity of 0.5-1.0 mA, 10 min/day). The severity of psoriasis-like lesions for each group was assessed. In addition, histological analysis of the lesions were performed. The levels of inflammatory cytokines were determined using Elisa. The expression levels of Substance P (SP) and NK1R were measured using Western blotting. In addition, NK1R inhibitor was administrated to evaluate the target of electroacupuncture in our mouse model. Results: Electroacupuncture significantly alleviated IMQ-induced skin lesions and epidermal thickness, accompanied with reduced keratinocyte proliferation, CD3+, CD4+, and CD8+ T cells infiltration. The reduced levels of inflammatory cytokines was observed after electroacupuncture treatment. In addition, electroacupuncture inhibited the expression levels of SP and NK1R. NK1R inhibitor could ameliorate lesional symptoms and suppress epidermal thickening and CD3+, CD4+, and CD8 + T cell infiltration. Conclusions: Electroacupuncture relieved psoriasis-like inflammation and T cell infiltration. This therapeutic action was likely mediated by the modulation of Substance P and its receptor NK1R.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Cooling Blood and Detoxicating Formular (CBDF) based on the theory of cooling blood and dosing detoxification, is a useful traditional Chinese medicine (TCM) medication for psoriasis with blood-heat syndrome. AIM OF THE STUDY: Investigate the active constituents and mechanisms of the CBDF for the treatment of psoriasis. MATERIALS AND METHODS: UPLC-Q-Orbitrap-HRMS technique was used to analyse the ingredients of CBDF absorbed into plasma and skin tissue. The therapeutic efficacy of CBDF was evaluated in treating an imiquimod (IMQ)-induced mouse model was assessed. Transcriptome analysis and gene enrichment analysis were used to explore the changes in gene expression and pathways following treatment with the CBDF. Validation was performed using western blotting, quantitative RT-PCR, flow cytometry, gene knockout and molecular docking in vitro and in vivo. RESULTS: 26 compounds were identified in the plasma of IMQ-induced psoriasis-like mouse with CBDF treatment, and higher levels of cimifugin in the lesion. CBDF improved the pathological changes of psoriasis, with inhibition of TNF-α, IL-23, and IL-17A and upregulation of IL-10. Gene enrichment analysis showed that the therapeutic effect of CBDF was related to AMPK pathway. In psoriasis lesions, the AMPK and fatty acid oxidation were suppressed, and glycolysis was enhanced. The Prkaa2, encoding AMPKα2 was down-regulated in psoriasis patients. CBDF inhibited glycolysis while stimulating fatty acid oxidation by the activating AMPK, thereby exerting an inhibitory effect on inflammation. CBDF inhibited MHCII, CD80, and CD86 on dendritic cells of skin drainage lymph node. In vitro, CBDF inhibited bone marrow-derived DCs secrete IL-23, TNF-α, and lactate, while enhanced fatty acid oxidation and AMPK activity. However, the therapeutic effect was weakened in AMPKα2 deletion. Additionally, psoriasis lesions and dendritic cells activation were significantly aggravated after AMPKα2 knockout. The key ingredients of the CBDF, cimifugin, rutin, astilbin, quercetin, and prim-O-glucosylcimifugin, all exhibit a notable affinity towards AMPKα2 binding. CONCLUSIONS: CBDF ameliorates psoriasis symptoms and inhibit dendritic cells maturation by regulating metabolic reprogramming in an AMPK-dependent mechanism.
RESUMO
Purpose: Resveratrol (Res) is a natural polyphenol with anti-inflammatory and immunomodulatory effects. Alterations in metabolic pathways have been studied in psoriasis. This study is aimed to further explore the potential molecular mechanism of psoriasis improvement by Res. Patients and Methods: Imiquimod (IMQ)-induced psoriasis-like mouse model was established to observe the effects of Res. NanoString nCounter Metabolic Pathways Panel was used to analyze the changed mRNA and qRT-PCR was used for validation. Flow cytometry was used to analyze immune cell subsets in skin lesions. In vitro, we observed the effects of Res on R848-stimulated macrophages glycolysis and inflammation. Results: Res reduced the proliferation of keratinocytes and the secretion of inflammatory cytokines in IMQ-induced psoriasis-like mouse model. Psoriasis model skin lesions were in a state of hypoxia, with upregulated glycolysis and downregulated AMPK activity. Res inhibited the levels of hypoxia-related genes (hif1α, hif3α) and glycolysis-related genes (hk1, ldha), meanwhile increased the levels of AMPK genes (prkaa1, prkaa2). Flow cytometry analysis revealed that Res decreased the infiltration of macrophages in psoriasis-like lesions. In addition, Res decreased the secretion of macrophage-associated pro-inflammatory cytokines (IL-23, TNF-α, IL-1ß). In vitro, Res diminished the secretion of IL-23, TNF-α, IL-1ß, and lactate by R848-stimulated macrophages and activated AMPK. Conclusion: This study suggested that Res diminished psoriasis symptoms by inhibiting macrophages infiltration and inhibiting glycolysis, which providing novel insights into the underlying mechanisms of therapeutic action of Res in the treatment of psoriasis.
RESUMO
Perfluorooctanoic acid (PFOA), a hazardous environmental pollutant, has been found to enhance hepatic synthesis of fibroblast growth factor 21 (FGF21). FGF21 can enter the brain and increase the expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus (PVN). In this study, adult male mice were orally administered PFOA to evaluate how it regulates emotion. Exposure of mice to PFOA (1 mg kg-1 bw) for 10 consecutive days (PFOA-mice) caused anxiety-like behaviors and a peroxisome proliferator-activated receptor α (PPARα)-dependent increase in hepatic FGF21 synthesis. The levels of CRF expression in not only PVN but also basolateral amygdala complex (BLA) neurons of PFOA-mice were increased via FGF receptor 1 (FGF-R1) activation. However, the microinjection of FGF-R1 or CRF 1 receptor (CRF-R1) antagonist in the BLA rather than the PVN of PFOA-mice could relieve their anxiety-like behaviors. In addition, external capsule-BLA synaptic transmission in PFOA-mice was enhanced by increasing CRF-R1-mediated presynaptic glutamate release, which was corrected by the blockade of PPARα, FGF-R1 and CRF-R1 or the inhibition of PKA. Furthermore, the threshold of frequency-dependent long-term potentiation (LTP) induction was decreased in the BLA of PFOA-mice, which depended on the activation of PPARα, FGF-R1, CRF-R1, PKA and NMDA receptor (NMDAR), whereas long-term depression (LTD) induction was unchanged. Thus, the results indicate that the exposure of male mice to PFOA (1 mg kg-1 bw) enhances CRF expression in BLA neurons by increasing hepatic FGF21 synthesis, which then enhances CRF-R1-mediated presynaptic glutamate release to facilitate NMDAR-dependent BLA-LTP induction, leading to the production of anxiety-like behaviors.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Hormônio Liberador da Corticotropina , Animais , Ansiedade/induzido quimicamente , Complexo Nuclear Basolateral da Amígdala/metabolismo , Caprilatos/toxicidade , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Fluorocarbonos , Masculino , CamundongosRESUMO
Psoriasis is a common chronic inflammatory hypertrophic skin disease characterized by abnormal proliferation and differentiation of keratinocyte and immune T cell. The pathogenesis of psoriasis has not been fully elucidated and there is no effective therapy in clinic. As a traditional Chinese medicine formula, Yangxue Jiedu Soup (YJS) has been used to treat inflammatory diseases caused by Yin Deficiency and Blood Dryness. The purpose of present study was to investigate the therapeutic effect and molecular mechanism of YJS on psoriasis model mice. Results showed that YJS effectively inhibited the hypertrophy, erythema and scales of psoriasis-like lesions to alleviate the pathological changes of skin lesions, and further decreased the production of TNF-α, IL-6, IL-1ß, IFN-γ, IL-17 and IL-23. Meanwhile, YJS also significantly reduced keratinocyte proliferation and maintained immune system balance by inhibiting the expression of PCNA, Ki-67, CD4 + and CD8 + in psoriasis mice. Moreover, the results further indicated that YJS could inhibit TLR4 activation and NF-κB p65 nuclear transfer by suppressing HSP70 secretion to attenuate the inflammatory response in IMQ-induced mice, which provided a theoretical basis for the clinical use of YJS in the treatment of psoriasis.
Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Psoríase/prevenção & controle , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas de Choque Térmico HSP70/metabolismo , Imiquimode , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fitoterapia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismoRESUMO
Background: Macrophage polarization plays an important role in the pathogenesis of COPD emphysema. Changes in macrophage polarization in COPD remain unclear, while polarization and ferroptosis are essential factors in its pathogenesis. Therefore, this study investigated the relationship between macrophage polarization and ferroptosis in COPD emphysema. Methods: We measured macrophage polarization and the levels of matrix metalloproteinases (MMPs) in the lung tissues of COPD patients and cigarette smoke (CS)-exposed mice. Flow cytometry was used to determine macrophage (THP-M cell) polarization changes. Ferroptosis was examined by FerroOrange, Perls' DAB, C11-BODIPY and 4-HNE staining. Nuclear receptor coactivator 4 (NCOA4) was measured in the lung tissues of COPD patients and CS-exposed mice by western blotting. A cell study was performed to confirm the regulatory effect of NCOA4 on macrophage polarization. Results: Increased M2 macrophages and MMP9 and MMP12 levels were observed in COPD patients, CS-exposed mice and THP-M cells cocultured with CS extract (CSE)-treated human bronchial epithelial (HBE) cells. Increased NCOA4 levels and ferroptosis were confirmed in COPD. Treatment with NCOA4 siRNA and the ferroptosis inhibitor ferrostatin-1 revealed an association between ferroptosis and M2 macrophages. These findings support a role for NCOA4, which induces an increase in M2 macrophages, in the pathogenesis of COPD emphysema. Conclusion: In our study, CS led to the dominance of the M2 phenotype in COPD. We identified NCOA4 as a regulator of M2 macrophages and emphysema by mediating ferroptosis, which offers a new direction for research into COPD diagnostics and treatment.
Assuntos
Enfisema , Ferroptose , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Modelos Animais de Doenças , Células Epiteliais , Humanos , Macrófagos/patologia , Camundongos , Coativadores de Receptor Nuclear/genética , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/patologia , NicotianaRESUMO
OBJECTIVE: To observe the effect of moxibustion on skin lesions and immune inflammatory response in psoriasis mice, and to explore the possible mechanism of moxibustion for psoriasis. METHODS: A total of 32 male BALB/c mice were randomly divided into a normal group, a model group, a moxibustion group and a medication group, 8 mice in each group. Psoriasis model was induced by applying 5% imiquimod cream on the back for 7 days in the model group, the moxibustion group and the medication group. At the same time of model establishment, the moxibustion group was treated with suspension moxibustion on skin lesions on the back, 20 min each time, once a day; the medication group was treated with 1 mg/kg methotrexate tablet solution by gavage, once a day. Both groups were intervened for 7 days. The daily changes of skin lesions were observed, and the psoriasis area and severity index (PASI) score was evaluated; the histopathological changes of skin lesions were observed by HE staining; the positive expression of proliferating cell nuclear antigen (PCNA) and T lymphocyte surface marker CD3 were detected by immunohistochemistry; the expression level of serum interleukin (IL) -17A was detected by ELISA, and the relative expressions of tumor necrosis factor-α (TNF-α), IL-1ß and IL-6 mRNA in skin lesions were detected by real-time PCR. RESULTS: The increased and hypertrophy scale, dry skin, red and swollen epidermis and obvious infiltration were observed in the model group, and each score and total score of PASI were higher than those in the normal group (P<0.01). The scale score, infiltration score, and total score of PASI in the moxibustion group were lower than those in the model group (P<0.01); the infiltration score and total score of PASI in the medication group were lower than those in the model group (P<0.01, P<0.05). The inflammatory cell infiltration in the model group was obvious, and the thickness of epidermal layer was increased compared with that in the normal group (P<0.01); the inflammatory cell infiltration and Munro micro abscess were decreased in the moxibustion group and the medication group, and the thickness of epidermal layer was decreased compared with that in the model group (P<0.01). Compared with the normal group, the positive cell number of PCNA and T was increased (P<0.01), and the body mass was decreased, and the spleen index was increased (P<0.01), and the expression of serum IL-17A and the relative expression of TNF-α, IL-1ß and IL-6 mRNA in the skin lesions was increased in the model group (P<0.01). Compared with the model group, the positive cell number of PCNA and T was reduced (P<0.01), and the spleen index and the relative expression of TNF-α, IL-1ß and IL-6 mRNA were reduced (P<0.01) in the moxibustion group and the medication group; the body mass of mice in the moxibustion group was higher than that in the model group (P<0.01); the content of serum IL-17A in the medication group was lower than that in the model group (P<0.01); the relative expression of TNF-α, IL-1ß mRNA in the moxibustion group was higher than that in the medication group (P<0.01). CONCLUSION: Moxibustion could effectively improve the scale and infiltration of skin lesions in psoriasis mice. Its mechanism may be related to inhibiting inflammatory response and regulating immunity.
Assuntos
Moxibustão , Psoríase , Animais , Imiquimode , Masculino , Camundongos , Psoríase/genética , Psoríase/terapia , Pele , Baço , Fator de Necrose Tumoral alfa/genéticaRESUMO
BACKGROUND: Psoriasis is a prevalent chronic inflammatory skin condition marked by immune cell infiltration and keratinocyte abnormal proliferation. Cimicifugae Rhizoma - Smilax glabra Roxb (CS) herb pair, the main component of Shengma Detoxification Decoction, has been proven effective for the treatment of psoriasis. However, the mechanism is yet to be deciphered. PURPOSE: To explore the mechanism of CS for the treatment of psoriasis. METHODS: The imiquimod-induced psoriasis-like lesion mouse model was used to identify the targets and the molecular mechanisms of CS. Network pharmacology combined with RNA-seq strategy was employed to predict the targets and mechanisms of CS for psoriasis. Metabolomics approaches were used to demonstrate the complexity of CS for the treatment of psoriasis. Finally, a compound-response-enzyme-gene network was constructed based on the multi-omics results to elucidate potential connections. RESULTS: The CS herb pair could significantly improve psoriatic lesions and reduce the inflammatory cell infiltration and proliferation of keratinocytes in skin lesions. Network pharmacology predicted that TNF, JNK, IL-6, and IL-1ß could be potential targets. RNA-seq data revealed that CS could significantly regulate genes and signaling pathways associated with Th17 responses, such as IL-36, IL-1ß, CCl2, CXCL16, keratin 14, keratin 5, and antimicrobial peptides S100A8 and S100A9 well as MAPK, mTOR, and other signaling pathways. Further experimental data validated that CS treatment remarkably reduced the expression of inflammatory cytokines and factors, such as CCL2, CCL7, IL1F6, IL-17, IL-23, IL-1ß, TNF-α, and IL-6, and inhibited the phosphorylation of p38 and ERK1/2. This indicated that CS exerts its therapeutic effect by inhibiting the MAPK signaling pathways. In addition, metabolomic analyses demonstrated that CS treatment improved seven metabolic pathways, these included phenylalanine, tyrosine, pyruvate metabolism, carnitine metabolism, etc. Four key metabolites (L-Arginine, L-Phenylalanine, L-Carnitine, O-Acetylcarnitine) and nine differential genes (CMA1, PCBD2, TPSAB1, TPSB2, etc.) were identified that affected amino acid metabolism, carnitine metabolism, and other pathways contributing to the infiltration of Th17 cells in psoriatic lesions. CONCLUSION: CS could alleviate IMQ-induced psoriasis-like dermatitis by reducing the expression of cytokines and chemokines mediated by the MAPK pathway, and improved amino acid and carnitine metabolism in vivo. Our study is the first to demonstrate the complex mechanism of CS for the treatment of psoriasis and provides a new paradigm to elucidate the pharmacological effects of Traditional Chinese Medicine (TCM) drugs for psoriasis from multiple perspectives.
Assuntos
Psoríase , Smilax , Aminoácidos , Animais , Carnitina , Cimicifuga , Citocinas , Modelos Animais de Doenças , Imiquimode , Interleucina-6 , Queratinócitos , Camundongos , Camundongos Endogâmicos BALB C , Farmacologia em Rede , Extratos Vegetais , RNA-Seq , PeleRESUMO
OBJECTIVE: To observe the effect of fire needling on psoriasis-like lesion and the signal transducer and activator of transcription 3 (STAT3) pathway in mice and compare the therapeutic effect between different interventions of fire needling therapy (surrounding technique of fire needling, fire needling at "Dazhui" [GV 14] and "Zusanli" [ST 36]). METHODS: Thirty male BALB/c mice were randomized into a blank group, a model group, a dexamthasone group, a surrounding technique group and an acupoint group, 6 mice in each one. Except the blank group, the mice in the rest groups were established as psoriasis-like lesion model by topical application with imiquimod cream, once daily, consecutively for 8 days. From day 4 to day 8, in the dexamthasone group, gastric infusion with 0.2 mL dexamthasone was administered, once daily. On day 4, 6 and 8, in the surrounding technique group, fire needling was exerted around the skin lesion; and fire needling was applied to "Dazhui" (GV 14) and "Zusanli" (ST 36) in the acupoint group, once a day. The changes in skin lesion on the dorsal parts of mice were observed in each group to score the psoriasis area and severity index (PASI). Using HE staining, the dermal morphological changes and epidermal thickness were observed in the mice of each group. The positive expression of proliferating cell-associated antigen Ki-67 was determined by immunofluorescence. Immunohistochemistry method was used to determine the expressions of , and T cells of skin tissue in each group. Using real-time PCR, the expressions of interleukin (IL)-17, IL-22, tumor necrosis factor α(TNF-α) mRNA were determined. Western blot method was adopted to determine the protein expressions of STAT3 and p-STAT3 in skin tissue in each group. RESULTS: Compared with the blank group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all increased in the mice of the model group (P<0.01). Except for the erythema scores of the dexamethasone group and the surrounding technique group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all decreased in each intervention group as compared with the model group (P<0.01). The infiltration scores and the total scores in the dexamethasone group and the acupoint group were lower than those in the surrounding technique group respectively (P<0.01, P<0.05). In comparison with the blank group, Ki-67 positive cell numbers and the numbers of , and T cells in skin tissue were increased in the mice of the model group (P<0.01). Ki-67 positive cell numbers and the numbers of , and T cells were reduced in each intervention group as compared with the model group (P<0.01), and the numbers of and T cells in the acupoint group were less than the surrounding technique group (P<0.01). Compared with the blank group, the mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all increased in the model group (P<0.01). The mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all decreased in each intervention group as compared with the model group (P<0.01, P<0.05). The mRNA expressions of IL-17, IL-22 and TNF-α in the acupoint group, as well as mRNA expression of IL-17 in the surrounding technique group were all lower than the dexamethasone group (P<0.01), while, the mRNA expression of IL-22 in the acupoint group was lower than the surrounding technique group (P<0.01). CONCLUSION: Fire needling therapy improves skin lesion severity in imiquimod induced psoriasis-like lesion of the mice, which is probably related to the inhibition of STAT3 pathway activation and the decrease of Th17 inflammatory factors expression. The systemic regulation of fire needling at "Dazhui" (GV 14) and "Zusanli" (ST 36) is superior to the local treatment.
Assuntos
Interleucina-17 , Psoríase , Animais , Dexametasona/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Interleucina-17/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Pele/metabolismo , Pele/patologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Psoriasis is a psychosomatic immune skin disease with psychological factors contributing to the disease. Substance P (SP) is highly expressed in the psoriatic lesions of patients and is involved in pathological disease progression. Tribulus terrestris L. has been used as a Chinese herbal medicine for disease prevention for thousands of years. Terrestrosin D (TED) has been identified as the effective monomeric component of Tribulus terrestris L.. PURPOSE: We investigated whether TED could reverse imiquimod-induced psoriatic lesions, and then, investigated its potential mechanism of action both in vivo and in vitro. METHODS: 5% imiquimod cream was applied onto the backs of mice for 6 days to induce psoriasis-like skin lesions. The psoriatic area and severity index (PASI) was then used for scoring disease severity. Pathological changes and Ki-67 expression levels in skin lesions were measured using hematoxylin and eosin (H&E) and immunofluorescence staining after TED administration. The in vivo and in vitro expression levels of inflammatory cytokines, the ratio of DCs, and SP were measured using ProcartaPlex Mouse Cytokine panels, flow cytometry, and western blotting. Behavioral assessments were determined using the open field and elevated plus-maze (EPM) test. RESULTS: TED decreased PASI scores, epidermal thickness, Ki-67 expression levels, the ratio of DCs in the spleen, and secretion of IL-12p70, IL-18, and TNF-α in imiquimod-induced psoriasis-like murine models. Furthermore, TED increased IL-10 secretion levels, improved behavior, and down-regulated the expression levels of SP. Additionally, TED inhibited the in vitro maturation and activation of SP-induced CD11c+ DCs and the release of IL-12p70 and IL-23. CONCLUSION: TED reduced DCs maturation, down-regulated the expression levels of inflammatory factors, and improved skin lesions and behavior of psoriasis-like murine models by inhibiting the interaction between Substance P and Dendritic cells.