Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(4): 2343-9, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25789878

RESUMO

Yttrium-doped barium zirconate (BZY) thin films recently showed surprising electric transport properties. Experimental investigations conducted mainly by electrochemical impedance spectroscopy suggested that a consistent part of this BZY conductivity is of protonic nature. These results have stimulated further investigations by local unconventional techniques. Here, we use electrochemical strain microscopy (ESM) to detect electrochemical activity in BZY films with nanoscale resolution. ESM in a novel cross-sectional measuring setup allows the direct visualization of the interfacial activity. The local electrochemical investigation is compared with the structural studies performed by state of art scanning transmission electron microscopy (STEM). The ESM and STEM results show a clear correlation between the conductivity and the interface structural defects. We propose a physical model based on a misfit dislocation network that introduces a novel 2D transport phenomenon, whose fingerprint is the low activation energy measured.

2.
ACS Appl Mater Interfaces ; 16(7): 8842-8852, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334118

RESUMO

The development of a Co-free and Ni-free electrocatalyst for carbon dioxide electrolysis would be a turning point for the large-scale commercialization of solid-oxide electrolysis cells (CO2-SOECs). Indeed, the demand for cobalt and nickel is expected to become critical by 2050 due to automotive electrification. Currently, the reference materials for CO2-SOEC electrodes are perovskite oxides containing Mn or Co (anodes) and Ni-YSZ cermets (cathodes). However, issues need to be addressed, such as structural degradation and/or carbon deposition at the cathode side, especially at high overpotentials. This work designs the 20 mol % replacement of iron by copper in La0.6Sr0.4FeO3-δ as a multipurpose electrode for CO2-SOECs. La0.6Sr0.4Fe0.8Cu0.2O3-δ (LSFCu) is synthesized by the solution combustion method, and iron partial substitution with copper is evaluated by X-ray powder diffraction with Rietveld refinement, X-ray photoelectron spectroscopy, thermogravimetric analyses, and electrical conductivity assessment. LSFCu is tested as the SOEC anode by measuring the area-specific resistance versus T and pO2. LSFCu structural, electrical, and electrocatalytic properties are also assessed in pure CO2 for the cathodic application. Finally, the proof of concept of a symmetric LSFCu-based CO2-SOEC is tested at 850 °C, revealing a current density value at 1.5 V of 1.22 A/cm2, which is remarkable when compared to similar Ni- or Co-containing systems.

3.
RSC Adv ; 14(27): 19041-19053, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38895523

RESUMO

The ongoing revolution in the plastic sector is the use of renewable and compostable materials obtained from biomass. However, their mechanical strength and thermal stability are generally not sufficient for practical applications. This study investigates the influence of natural additives on the physical-mechanical properties of a new biobased compostable bioplastic, SP-Milk®, produced from milk scraps. To provide this matrix the appropriate mechanical and thermal properties for daily use while leaving its compostability unchanged, the effect of incorporating vegetal fibres and organic particulates into the bulk bioplastic was investigated. Mechanical tests showed that fibres with a length of 2 mm are capable of increasing ductility by up to 97% compared with the original matrix, whereas fibres with a length of 10 mm led to a more effective reinforcement due to the residual resistance effect, increasing the final compressive strain from 20% (original matrix) to 70.9%. The addition of particulate yielded a harder and more resistant material, and the elastic modulus increased by 21%, although with loss of ductility, compared to SP-Milk® alone. The combination of fibres and particles resulted in the preservation of the positive effects of both components, showing a higher elastic modulus (240 ± 20 MPa, compared to 199 ± 12 MPa for the matrix), higher ductility (+50%) and higher strain at failure (+30%), compared with the matrix. Excellent compatibility between the polymeric matrix and both the fibres and the granules was confirmed using scanning electron microscopy. The thermal analysis demonstrated improved thermal stability particularly because of the effect of the combination of granules and fibres. The results validate that natural reinforcement agents are effective and ecologically advantageous.

4.
Nat Mater ; 9(10): 846-52, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852619

RESUMO

Reducing the operating temperature in the 500-750 °C range is needed for widespread use of solid oxide fuel cells (SOFCs). Proton-conducting oxides are gaining wide interest as electrolyte materials for this aim. We report the fabrication of BaZr(0.8)Y(0.2)O(3-δ) (BZY) proton-conducting electrolyte thin films by pulsed laser deposition on different single-crystalline substrates. Highly textured, epitaxially oriented BZY films were obtained on (100)-oriented MgO substrates, showing the largest proton conductivity ever reported for BZY samples, being 0.11 S cm(-1) at 500 °C. The excellent crystalline quality of BZY films allowed for the first time the experimental measurement of the large BZY bulk conductivity above 300 °C, expected in the absence of blocking grain boundaries. The measured proton conductivity is also significantly larger than the conductivity values of oxygen-ion conductors in the same temperature range, opening new potential for the development of miniaturized SOFCs for portable power supply.

5.
J Nanosci Nanotechnol ; 9(7): 4430-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19916469

RESUMO

Ta2O5 nanopowders to be used as sensing electrodes in high temperature electrochemical gas sensors for hydrocarbons detection were synthesized using a sol-gel method and their structural and microstructural properties were investigated. The as-synthesized powders were heated at different temperatures in the range 250-1000 degrees C and characterized by TG-DTA, XRD, SEM, TEM and FT-IR. This investigation allowed to identify the correct thermal treatments to achieve the microstructural, textural and functional stability of materials working at high temperature, preserving their nano-metric grain size. Planar sensors fabricated by using Ta2O5 powders treated at 750 degrees C showed promising results for the selective detection of propylene at high temperature (700 degrees C). The good stability of the sensing response after gas exposure at high temperature was correlated to the stable microstructure the electrodes. Thus, Ta2O5 powders seems good candidate as sensing electrode for sensors for automotive exhausts monitoring.


Assuntos
Alcenos/análise , Eletroquímica/instrumentação , Gases/análise , Nanoestruturas/química , Nanotecnologia/instrumentação , Óxidos/química , Tantálio/química , Transdutores , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 11(12): 12077-12087, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30835426

RESUMO

Recognition of enantiomers is one of the most arduous challenges in chemical sensor development. Although several chiral systems exist, their effective exploitation as the sensitive layer in chemical sensors is hampered by several practical implications that hinder stereoselective recognition in solid state. In this paper, we report a new methodology to efficiently prepare chiral solid films, by using a hybrid material approach where chiral porphyrin derivatives are grafted onto zinc oxide nanoparticles. Circular dichroism (CD) evidences that the solid-state film of the material retains supramolecular chirality due to porphyrin interactions, besides an additional CD feature in correspondence of the absorbance of ZnO (375 nm), suggesting the induction of chirality in the underlying zinc oxide nanoparticles. The capability of hybrid material to detect and recognize vapors of enantiomer pairs was evaluated by fabricating gas sensors based on quartz microbalances. Chiral films of porphyrin on its own were used for comparison. The sensor based on functionalized nanostructures presented a remarkable stereoselectivity in the recognition of limonene enantiomers, whose ability to intercalate in the porphyrin layers makes this terpene an optimal chiral probe. The chiroptical and stereoselective properties of the hybrid material confirm that the use of porphyrin-capped ZnO nanostructures is a viable route for the formation of chiral selective surfaces.

7.
Waste Manag ; 29(12): 2994-3003, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19700299

RESUMO

This work presents the results of a study on accelerated carbonation of incinerator air pollution control residues, with a particular focus on the modifications in the leaching behaviour of the ash. Aqueous carbonation experiments were carried out using 100% CO(2) at different temperatures, pressures and liquid-to-solid ratios, in order to assess their influence on process kinetics, CO(2) uptake and the leaching behaviour of major and trace elements. The ash showed a particularly high reactivity towards CO(2), owing to the abundance of calcium hydroxides phases, with a maximum CO(2) uptake of approximately 250g/kg. The main effects of carbonation on trace metal leaching involved a significant decrease in mobility for Pb, Zn and Cu at high pH values, a slight change or mobilization for Cr and Sb, and no major effects on the release of As and soluble salts. Geochemical modelling of leachates indicated solubility control by different minerals after carbonation. In particular, in the stability pH range of carbonates, solubility control by a number of metal carbonates was clearly suggested by modelling results. These findings indicate that accelerated carbonation of incinerator ashes has the potential to convert trace contaminants into sparingly soluble carbonate forms, with an overall positive effect on their leaching behaviour.


Assuntos
Dióxido de Carbono/química , Resíduos Perigosos/análise , Metais Pesados/análise , Poluição do Ar/prevenção & controle , Incineração , Cinética , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA