Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Clin Periodontol ; 49(7): 717-729, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35415929

RESUMO

AIM: The aim of this study was to evaluate the effect of the administration of pasteurized Akkermansia muciniphila and Amuc_1100 on periodontal destruction in lean and obese mice and to determine the impact of the mode of administration. MATERIALS AND METHODS: Porphyromonas gingivalis-associated experimental periodontitis was induced in lean and obese mice. After 3 weeks, live, pasteurized A. muciniphila or Amuc_1100 was administered by oral or gastric gavage for three additional weeks. Moreover, an evaluation of the interaction between A. muciniphila and P. gingivalis was performed by RNA-sequencing, and cytokines secretion was measured in exposed macrophages. RESULTS: Oral administration of live, pasteurized A. muciniphila or Amuc_1100 significantly decreased P. gingivalis-induced periodontal destruction and inflammatory infiltrate in lean and obese mice and contributed to the reduction of the plasma level of TNF-α and to the increase of IL-10. The co-culture of A. muciniphila and P. gingivalis induced an increased expression of genes linked to the synthesis of monobactam-related antibiotics in A. muciniphila, while a decrease of the gingipains and type IX secretion system was observed in P. gingivalis. In P. gingivalis-infected macrophages, pasteurized A. muciniphila decreased TNF-α and increased IL-10 levels. CONCLUSIONS: Pasteurized A. muciniphila can counteract P. gingivalis-associated periodontal destruction.


Assuntos
Akkermansia , Periodontite , Porphyromonas gingivalis , Animais , Inflamação , Interleucina-10 , Camundongos , Camundongos Obesos , Pasteurização , Periodontite/microbiologia , Periodontite/terapia , Porphyromonas gingivalis/patogenicidade , Fator de Necrose Tumoral alfa
2.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020212

RESUMO

Periodontitis is a chronic inflammatory disease triggered by dysbiosis of the oral microbiome. Porphyromonas gingivalis is strongly implicated in periodontal inflammation, gingival tissue destruction, and alveolar bone loss through sustained exacerbation of the host response. Recently, the use of other bacterial species, such as Akkermansia muciniphila, has been suggested to counteract inflammation elicited by P. gingivalis In this study, the effects of A. muciniphila and its pili-like protein Amuc_1100 on macrophage polarization during P. gingivalis infection were evaluated in a murine model of experimental periodontitis. Mice were gavaged with P. gingivalis alone or in combination with A. muciniphila or Amuc_1100 for 6 weeks. Morphometric analysis demonstrated that the addition of A. muciniphila or Amuc_1100 significantly reduced P. gingivalis-induced alveolar bone loss. This decreased bone loss was associated with a proresolutive phenotype (M2) of macrophages isolated from submandibular lymph nodes as observed by flow cytometry. Furthermore, the expression of interleukin 10 (IL-10) at the RNA and protein levels was significantly increased in the gingival tissues of the mice and in macrophages exposed to A. muciniphila or Amuc_1100, confirming their anti-inflammatory properties. This study demonstrates the putative therapeutic interest of the administration of A. muciniphila or Amuc_1100 in the management of periodontitis through their anti-inflammatory properties.


Assuntos
Proteínas de Bactérias/imunologia , Fímbrias Bacterianas/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Periodontite/imunologia , Periodontite/microbiologia , Akkermansia/fisiologia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/patologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Fímbrias Bacterianas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/metabolismo , Periodontite/metabolismo
3.
Nucleic Acids Res ; 44(7): 3373-89, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26883633

RESUMO

The recent findings that the narrow-specificity endoribonuclease RNase III and the 5' exonuclease RNase J1 are not essential in the Gram-positive model organism,Bacillus subtilis, facilitated a global analysis of internal 5' ends that are generated or acted upon by these enzymes. An RNA-Seq protocol known as PARE (Parallel Analysis of RNA Ends) was used to capture 5' monophosphorylated RNA ends in ribonuclease wild-type and mutant strains. Comparison of PARE peaks in strains with RNase III present or absent showed that, in addition to its well-known role in ribosomal (rRNA) processing, many coding sequences and intergenic regions appeared to be direct targets of RNase III. These target sites were, in most cases, not associated with a known antisense RNA. The PARE analysis also revealed an accumulation of 3'-proximal peaks that correlated with the absence of RNase J1, confirming the importance of RNase J1 in degrading RNA fragments that contain the transcription terminator structure. A significant result from the PARE analysis was the discovery of an endonuclease cleavage just 2 nts downstream of the 16S rRNA 3' end. This latter observation begins to answer, at least for B. subtilis, a long-standing question on the exonucleolytic versus endonucleolytic nature of 16S rRNA maturation.


Assuntos
Bacillus subtilis/genética , Exorribonucleases/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Ribonuclease III/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Mutação , Óperon , Processamento Pós-Transcricional do RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Ribossômico/química , RNA Ribossômico 16S/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Análise de Sequência de RNA
4.
Mol Microbiol ; 95(2): 270-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25402410

RESUMO

Stable RNA maturation is a key process in the generation of functional RNAs, and failure to correctly process these RNAs can lead to their elimination through quality control mechanisms. Studies of the maturation pathways of ribosomal RNA and transfer RNA in Bacillus subtilis showed they were radically different from Escherichia coli and led to the identification of new B. subtilis-specific enzymes. We noticed that, despite their important roles in translation, a number of B. subtilis small stable RNAs still did not have characterised maturation pathways, notably the tmRNA, involved in ribosome rescue, and the RNase P RNA, involved in tRNA maturation. Here, we show that tmRNA is matured by RNase P and RNase Z at its 5' and 3' extremities, respectively, whereas the RNase P RNA is matured on its 3' side by RNase Y. Recent evidence that several RNases are not essential in B. subtilis prompted us to revisit maturation of the scRNA, a component of the signal recognition particle involved in co-translational insertion of specific proteins into the membrane. We show that RNase Y is also involved in 3' processing of scRNA. Lastly, we identified some of the enzymes involved in the turnover of these three stable RNAs.


Assuntos
Bacillus subtilis/genética , RNA Bacteriano/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Ribonuclease P/metabolismo , Sequência de Bases , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Genótipo , RNA Bacteriano/genética , RNA Ribossômico/metabolismo , RNA Citoplasmático Pequeno/genética , Ribonucleases/metabolismo
5.
mBio ; 15(5): e0069324, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587426

RESUMO

Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.


Assuntos
Variação Genética , Genótipo , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/classificação , Humanos , Recombinação Genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Fímbrias/genética , Transferência Genética Horizontal , Antígenos de Bactérias/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Impetigo/microbiologia , Impetigo/epidemiologia , Faringite/microbiologia , Fímbrias Bacterianas/genética , Proteínas de Transporte
6.
Nucleic Acids Res ; 38(12): 4067-78, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20181675

RESUMO

Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world's most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed.


Assuntos
Mycobacterium bovis/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , RNA Bacteriano/metabolismo , RNA não Traduzido/metabolismo , Clonagem Molecular , Evolução Molecular , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/análise , RNA não Traduzido/análise
7.
J Bacteriol ; 192(15): 3934-43, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20511494

RESUMO

IntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known. In vitro integration assays with substrates containing arm-type site mutants demonstrated that attDOT sequences containing mutations in the L1 arm-type site or in the R1 and R2 or R1 and R2' arm-type sites were dramatically defective in integration. Substrates containing mutations in the L1 and R1 arm-type sites showed a 10- to 20-fold decrease in detectable in vitro excision, but introduction of multiple arm-type site mutations in attR did not have an effect on the excision frequency. A sixth arm-type site, the R1' site, was also identified and shown to be required for integration and important for efficient excision. These results suggest that intramolecular IntDOT interactions are required for integration, while the actions of accessory factors are more important for excision. Gel shift assays performed in the presence of core- and arm-type site DNAs showed that IntDOT affinity for the attDOT core was enhanced when IntDOT was simultaneously bound to arm-type site DNA.


Assuntos
Sítios de Ligação Microbiológicos , Bacteroides/enzimologia , DNA Bacteriano/genética , Integrases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Integrases/genética , Mutação , Ligação Proteica , Recombinação Genética
8.
Genome Biol ; 9(10): 322, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18947378

RESUMO

A report of the meeting 'Molecular Genetics of Bacteria and Phages', Cold Spring Harbor, USA, 20-24 August 2008.


Assuntos
Bactérias/genética , Bacteriófagos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Genoma Bacteriano , Genômica
9.
J Bacteriol ; 189(7): 2692-701, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17277054

RESUMO

CTnDOT is a Bacteroides conjugative transposon (CTn) that has facilitated the spread of antibiotic resistances among bacteria in the human gut in recent years. Although the integrase encoded by CTnDOT (IntDOT) carries the C-terminal set of conserved amino acids that is characteristic of the tyrosine family of recombinases, the reaction it catalyzes involves a novel step that creates a short region of heterology at the joined ends of the element during recombination. Also, in contrast to tyrosine recombinases, IntDOT catalyzes a reaction that is not site specific. To determine what types of contacts IntDOT makes with the DNA during excision and integration, we first developed an agarose gel-based assay for CTnDOT recombination, which facilitated the purification of the native IntDOT protein. The partially purified IntDOT was then used for DNase I footprinting analysis of the integration site attDOT and the excision sites attL and attR. Our results indicate that CTnDOT has five or six arm sites that are likely to be involved in forming higher-order nucleoprotein complexes necessary for synapsis. In addition, there are four core sites that flank the sites of strand exchange during recombination. Thus, despite the fact that the reaction catalyzed by IntDOT appears to be different from that typically catalyzed by tyrosine recombinases, the protein-DNA interactions required for higher-order structures and recombination appear to be similar.


Assuntos
Bacteroides/genética , Conjugação Genética , Elementos de DNA Transponíveis/genética , Sequência de Bases , Pegada de DNA , Primers do DNA , Desoxirribonuclease I , Escherichia coli/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
10.
Mol Microbiol ; 56(4): 1035-48, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15853888

RESUMO

CTnDOT, a Bacteroides conjugative transposon (CTn), initiates its transfer by excising to form a circular intermediate. This process has been shown to be complex, involving an unusual DNA intermediate with a short region of heterology and several CTn-encoded proteins. No information was available, however, about the sizes or sequence requirements of the att sites (attL and attR) at the ends of the integrated element where the processing occurs during excision. Using a newly developed in vitro competition excision assay, we have now localized attL to 153 bp and attR to 179 bp. Excision of CTnDOT involves staggered cuts that produce 5 bp chromosomal sequences at either end of the CTn. These 5 bp sequences (coupling sequences) form a region of heterology in the excised circular intermediate. Site-directed mutations that made the coupling sequences complementary and removed the region of heterology had no effect on excision. Thus, heterology is not essential. Mutagenesis of sequences adjacent to the coupling sequences revealed a 6 bp site in attR that was essential for excision. Mutating the analogous region in attL had little effect on excision. Regions within the attL site that appear to play a role in excision were found by introducing small insertions (phasing mutations) that could interfere with protein-protein or protein-DNA interactions. Similar insertion mutations in attR had no significant effect on excision. These results support the hypothesis that the CTnDOT excision reaction is asymmetrical with respect to likely protein binding sites and involves multiple protein-DNA interactions.


Assuntos
Bacteroides/genética , Sequência de Bases , Conjugação Genética , Elementos de DNA Transponíveis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Mol Microbiol ; 43(5): 1319-29, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11918816

RESUMO

A deletion derivative of the ermC gene was constructed that expresses a 254-nucleotide mRNA. The small size of this mRNA facilitated the detection of processing products that did not differ greatly in size from the full-length transcript. In the presence of erythromycin, which induces ribosome stalling near the 5' end of ermC mRNA, the 254-nucleotide mRNA was cleaved endonucleolytically at the site of ribosome stalling. Only the downstream product of this cleavage was detectable; the upstream product was apparently too unstable to be detected. The downstream cleavage product accumulated at times after rifampicin addition, suggesting that the stalled ribosome at the 5' end conferred stability to this RNA fragment. Neither Bs-RNase III nor RNase M5, the two known narrow-specificity endoribonucleases of Bacillus subtilis, was responsible for this cleavage. These results indicate the presence in B. subtilis of another specific endoribonuclease, which may be ribosome associated.


Assuntos
Bacillus subtilis/enzimologia , Endorribonucleases/metabolismo , RNA Mensageiro/metabolismo , Bacillus subtilis/genética , Sequência de Bases , Deleção de Genes , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética
12.
Plasmid ; 52(2): 119-30, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15336489

RESUMO

Four genes have been found to be essential for excision of the Bacteroides conjugative transposon CTnDOT in vivo: intDOT, orf2c, orf2d, and exc. The intDOT gene encodes an integrase that is essential for integration and excision. The function of the other genes is still uncertain. Previously, we developed an in vitro system for the integration reaction. We have now developed an in vitro system for excision. In this system, the left and right junctions of CTnDOT, attL, and attR, are provided on separate plasmids. The excision reaction produced a cointegrate which contained the attDOT (the joined ends of CTnDOT) and attB (the chromosomal target site). Cointegrate formation was observed after electroporation of Escherichia coli with the assay mixture and was also detected directly in the assay mixture by Southern hybridization. The highest reaction frequencies (10(-3)) were obtained with a mixture that contained purified IntDOT and a cell extract from Bacteroides thetaiotaomicron 4001, which contained the excision region of CTnDOT carried on a plasmid. An unexpected finding was that the addition of purified Exc, which is essential for excision in vivo, was not required for excision in vitro, nor did it increase the frequency of cointegrate formation.


Assuntos
Bacteroides/genética , Elementos de DNA Transponíveis/genética , Sítios de Ligação Microbiológicos/genética , Bacteroides/enzimologia , Sequência de Bases , Códon de Terminação , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroporação , Escherichia coli/genética , Integrases/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Plasmídeos/genética , Recombinação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA