Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Cancer ; 128(4): 936-43, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20473893

RESUMO

The association of invasive ovarian carcinoma risk with the functional polymorphism rs2228570 (aka rs10735810; FokI polymorphism) in the vitamin D receptor (VDR) gene was examined in 1820 white non-Hispanic cases and 3479 controls in a pooled analysis of five population-based case-control studies within the Ovarian Cancer Association Consortium. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. Carriers of the rare T allele were at increased risk of ovarian carcinoma compared to women with the CC genotype in all studies combined; each copy of the T allele was associated with a modest 9% increased risk (OR = 1.09; 95% CI: 1.01-1.19; p = 0.04). No significant heterogeneity among studies was observed (p = 0.37) and, after excluding the dataset from the Hawaii study, the risk association for rs2228570 among replication studies was unchanged (OR = 1.09; 95% CI: 1.00-1.19; p = 0.06). A stronger association of rs2228570 with risk was observed among younger women (aged < 50 years versus 50 years or older) (p = 0.04). In all studies combined, the increased risk per copy of the T allele among younger women was 24% (OR = 1.24; 95% CI: 1.04-1.47; p = 0.02). This association remained statistically significant after excluding the Hawaii data (OR = 1.20; 95% CI: 1.01-1.43; p = 0.04). No heterogeneity of the association was observed by stage (p = 0.46), tumor histology (p = 0.98), or time between diagnosis and interview (p = 0.94). This pooled analysis provides further evidence that the VDR rs2228570 polymorphism might influence ovarian cancer susceptibility.


Assuntos
Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Polimorfismo Genético/genética , Receptores de Calcitriol/genética , População Branca/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias Ovarianas/etnologia , Fatores de Risco , Adulto Jovem
2.
Hum Mol Genet ; 18(12): 2297-304, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19304784

RESUMO

Because both ovarian and breast cancer are hormone-related and are known to have some predisposition genes in common, we evaluated 11 of the most significant hits (six with confirmed associations with breast cancer) from the breast cancer genome-wide association study for association with invasive ovarian cancer. Eleven SNPs were initially genotyped in 2927 invasive ovarian cancer cases and 4143 controls from six ovarian cancer case-control studies. Genotype frequencies in cases and controls were compared using a likelihood ratio test in a logistic regression model stratified by study. Initially, three SNPs (rs2107425 in MRPL23, rs7313833 in PTHLH, rs3803662 in TNRC9) were weakly associated with ovarian cancer risk and one SNP (rs4954956 in NXPH2) was associated with serous ovarian cancer in non-Hispanic white subjects (P-trend < 0.1). These four SNPs were then genotyped in an additional 4060 cases and 6308 controls from eight independent studies. Only rs4954956 was significantly associated with ovarian cancer risk both in the replication study and in combined analyses. This association was stronger for the serous histological subtype [per minor allele odds ratio (OR) 1.07 95% CI 1.01-1.13, P-trend = 0.02 for all types of ovarian cancer and OR 1.14 95% CI 1.07-1.22, P-trend = 0.00017 for serous ovarian cancer]. In conclusion, we found that rs4954956 was associated with increased ovarian cancer risk, particularly for serous ovarian cancer. However, none of the six confirmed breast cancer susceptibility variants we tested was associated with ovarian cancer risk. Further work will be needed to identify the causal variant associated with rs4954956 or elucidate its function.


Assuntos
Neoplasias da Mama/genética , Estudo de Associação Genômica Ampla , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Glicoproteínas/genética , Humanos , Neuropeptídeos/genética , Neoplasias Ovarianas/patologia , Fatores de Risco , População Branca/genética
3.
BMC Cancer ; 10: 47, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20167074

RESUMO

BACKGROUND: Half of the familial aggregation of ovarian cancer can't be explained by any known risk genes, suggesting the existence of other genetic risk factors. Some of these unknown factors may not be traditional protein encoding genes. MicroRNA (miRNA) plays a critical role in tumorigenesis, but it is still unknown if variants in miRNA genes lead to predisposition to cancer. Considering the fact that miRNA regulates a number of tumor suppressor genes (TSGs) and oncogenes, genetic variations in miRNA genes could affect the levels of expression of TSGs or oncogenes and, thereby, cancer risk. METHODS AND RESULTS: To test this hypothesis in familial ovarian cancer, we screened for genetic variants in thirty selected miRNA genes, which are predicted to regulate key ovarian cancer genes and are reported to be misexpressed in ovarian tumor tissues, in eighty-three patients with familial ovarian cancer. All of the patients are non-carriers of any known BRCA1/2 or mismatch repair (MMR) gene mutations. Seven novel genetic variants were observed in four primary or precursor miRNA genes. Among them, three rare variants were found in the precursor or primary precursor of the miR-191 gene. In functional assays, the one variant located in the precursor of miR-191 resulted in conformational changes in the predicted secondary structures, and consequently altered the expression of mature miR-191. In further analysis, we found that this particular variant exists in five family members who had ovarian cancer. CONCLUSIONS: Our findings suggest that there are novel genetic variants in miRNA genes, and those certain genetic variants in miRNA genes can affect the expression of mature miRNAs and, consequently, might alter the regulation of TSGs or oncogenes. Additionally, the variant might be potentially associated with the development of familial ovarian cancer.


Assuntos
Variação Genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Feminino , Genes Supressores de Tumor , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Fatores de Risco
4.
Cancer Epidemiol Biomarkers Prev ; 18(3): 935-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19258477

RESUMO

Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from existing genotype data, we conducted a combined analysis of five independent studies of invasive epithelial ovarian cancer. Up to 2,120 cases and 3,382 controls were genotyped in the course of two collaborations at a variety of SNPs in 11 cell cycle genes (CDKN2C, CDKN1A, CCND3, CCND1, CCND2, CDKN1B, CDK2, CDK4, RB1, CDKN2D, and CCNE1) and one gene region (CDKN2A-CDKN2B). Because of the semi-overlapping nature of the 123 assayed tagging SNPs, we performed multiple imputation based on fastPHASE using data from White non-Hispanic study participants and participants in the international HapMap Consortium and National Institute of Environmental Health Sciences SNPs Program. Logistic regression assuming a log-additive model was done on combined and imputed data. We observed strengthened signals in imputation-based analyses at several SNPs, particularly CDKN2A-CDKN2B rs3731239; CCND1 rs602652, rs3212879, rs649392, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls.


Assuntos
Ciclo Celular/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Ciclina D1/genética , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Genótipo , Humanos , Modelos Logísticos , Cadeias de Markov , Pessoa de Meia-Idade , Minnesota , Invasividade Neoplásica , North Carolina , Proteínas Oncogênicas/genética , Sistema de Registros , Risco
5.
Clin Cancer Res ; 14(4): 1090-5, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281541

RESUMO

PURPOSE: Somatic alterations have been shown to correlate with ovarian cancer prognosis and survival, but less is known about the effects on survival of common inherited genetic variation. Of particular interest are genes involved in cell cycle pathways, which regulate cell division and could plausibly influence clinical characteristics of multiple tumors types. EXPERIMENTAL DESIGN: We examined associations between common germ-line genetic variation in 14 genes involved in cell cycle pathway (CCND1, CCND2, CCND3, CCNE1, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CDKN2D, CDK2, CDK4, CDK6, and RB1) and survival among women with invasive ovarian cancer participating in a multicenter case-control study from United Kingdom, Denmark, and United States. DNAs from up to 1,499 women were genotyped for 97 single-nucleotide polymorphisms that tagged the known common variants (minor allele frequency > or = 0.05) in these genes. The genotypes of each polymorphism were tested for association with survival by Cox regression analysis. RESULTS: A nominally statistically significant association between genotype and ovarian cancer survival was observed for polymorphisms in CCND2 and CCNE1. The per-allele hazard ratios (95% confidence intervals) were 1.16 (1.03-1.31; P = 0.02) for rs3217933, 1.14 (1.02-1.27; P = 0.024) for rs3217901, and 0.85 (0.73-1.00; P = 0.043) for rs3217862 in CCND2 and 1.39 (1.04-1.85; P = 0.033) for rs3218038 in CCNE1. However, these were not significant after adjusting for multiple hypothesis tests. CONCLUSION: It is unlikely that common variants in cell cycle pathways examined above associated with moderate effect in survival after diagnosis of ovarian cancer. Much larger studies will be needed to exclude common variants with small effects.


Assuntos
Genes cdc , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico
6.
Cancer Res ; 67(7): 3027-35, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17409409

RESUMO

High-risk susceptibility genes explain <40% of the excess risk of familial ovarian cancer. Therefore, other ovarian cancer susceptibility genes are likely to exist. We have used a single nucleotide polymorphism (SNP)-tagging approach to evaluate common variants in 13 genes involved in cell cycle control-CCND1, CCND2, CCND3, CCNE1, CDK2, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, and CDKN2D-and risk of invasive epithelial ovarian cancer. We used a two-stage, multicenter, case-control study. In stage 1, 88 SNPs that tag common variation in these genes were genotyped in three studies from the United Kingdom, United States, and Denmark ( approximately 1,500 cases and 2,500 controls). Genotype frequencies in cases and controls were compared using logistic regression. In stage 2, eight other studies from Australia, Poland, and the United States ( approximately 2,000 cases and approximately 3,200 controls) were genotyped for the five most significant SNPs from stage 1. No SNP was significant in the stage 2 data alone. Using the combined stages 1 and 2 data set, CDKN2A rs3731257 and CDKN1B rs2066827 were associated with disease risk (unadjusted P trend = 0.008 and 0.036, respectively), but these were not significant after adjusting for multiple testing. Carrying the minor allele of these SNPs was found to be associated with reduced risk [OR, 0.91 (0.85-0.98) for rs3731257; and OR, 0.93 (0.87-0.995) for rs2066827]. In conclusion, we have found evidence that a single tagged SNP in both the CDKN2A and CDKN1B genes may be associated with reduced ovarian cancer risk. This study highlights the need for multicenter collaborations for genetic association studies.


Assuntos
Genes cdc , Neoplasias Ovarianas/genética , Estudos de Casos e Controles , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único
7.
Carcinogenesis ; 29(10): 1963-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18660546

RESUMO

A G to C polymorphism (rs2910164) is located within the sequence of miR-146a precursor, which leads to a change from a G:U pair to a C:U mismatch in its stem region. The predicted miR-146a target genes include BRCA1 and BRCA2, which are key breast and ovarian cancer genes. To examine whether rs2910164 plays any role in breast and/or ovarian cancer, we studied associations between this polymorphism and age of diagnosis in 42 patients with familial breast cancer and 82 patients with familial ovarian cancer. Breast cancer patients who had at least one miR-146a variant allele were diagnosed at an earlier age than with no variant alleles (median age 45 versus 56, P = 0.029) and ovarian cancer patients who had at least one miR-146a variant allele were diagnosed younger than women without any variant allele (median age 45 versus 50, P = 0.014). In further functional analysis, we found that the variant allele displayed increased production of mature miR-146a from the precursor microRNA compared with the common allele. Consistent with the target prediction, in a target in vitro assay, we observed that miR-146a could bind to the 3' untranslated regions (UTRs) of BRCA1 and BRCA2 messenger RNAs (mRNAs) and potentially modulate their mRNA expression. Intriguingly, the binding capacity between the 3' UTR of BRCA1 and miR-146a was statistically significantly stronger in variant C allele than those in common G allele (P = 0.046). Taken together, our data suggest that breast/ovarian cancer patients with variant C allele miR-146a may have high levels of mature miR-146 and that these variants predispose them to an earlier age of onset of familial breast and ovarian cancers.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Polimorfismo Genético , Adulto , Fatores Etários , Idade de Início , Idoso , Neoplasias da Mama/etiologia , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Genótipo , Humanos , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/etiologia
8.
Int J Cancer ; 123(2): 380-388, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18431743

RESUMO

The Ovarian Cancer Association Consortium selected 7 candidate single nucleotide polymorphisms (SNPs), for which there is evidence from previous studies of an association with variation in ovarian cancer or breast cancer risks. The SNPs selected for analysis were F31I (rs2273535) in AURKA, N372H (rs144848) in BRCA2, rs2854344 in intron 17 of RB1, rs2811712 5' flanking CDKN2A, rs523349 in the 3' UTR of SRD5A2, D302H (rs1045485) in CASP8 and L10P (rs1982073) in TGFB1. Fourteen studies genotyped 4,624 invasive epithelial ovarian cancer cases and 8,113 controls of white non-Hispanic origin. A marginally significant association was found for RB1 when all studies were included [ordinal odds ratio (OR) 0.88 (95% confidence interval (CI) 0.79-1.00) p = 0.041 and dominant OR 0.87 (95% CI 0.76-0.98) p = 0.025]; when the studies that originally suggested an association were excluded, the result was suggestive although no longer statistically significant (ordinal OR 0.92, 95% CI 0.79-1.06). This SNP has also been shown to have an association with decreased risk in breast cancer. There was a suggestion of an association for AURKA, when one study that caused significant study heterogeneity was excluded [ordinal OR 1.10 (95% CI 1.01-1.20) p = 0.027; dominant OR 1.12 (95% CI 1.01-1.24) p = 0.03]. The other 5 SNPs in BRCA2, CDKN2A, SRD5A2, CASP8 and TGFB1 showed no association with ovarian cancer risk; given the large sample size, these results can also be considered to be informative. These null results for SNPs identified from relatively large initial studies shows the importance of replicating associations by a consortium approach.


Assuntos
Carcinoma/genética , Mutação , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas Reguladoras de Apoptose , Aurora Quinase A , Aurora Quinases , Proteína BRCA2/genética , Neoplasias da Mama/genética , Estudos de Casos e Controles , Caspase 8/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Genótipo , Humanos , Razão de Chances , Proteínas Serina-Treonina Quinases/genética , Proteína do Retinoblastoma/genética , Fator de Crescimento Transformador beta1/genética , População Branca/genética
9.
Cancer Epidemiol Biomarkers Prev ; 17(12): 3567-72, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19064572

RESUMO

Over 22,000 cases of ovarian cancer were diagnosed in 2007 in the United States, but only a fraction of them can be attributed to mutations in highly penetrant genes such as BRCA1. To determine whether low-penetrance genetic variants contribute to ovarian cancer risk, we genotyped 1,536 single nucleotide polymorphisms (SNP) in several candidate gene pathways in 848 epithelial ovarian cancer cases and 798 controls in the North Carolina Ovarian Cancer Study (NCO) using a customized Illumina array. The inflammation gene interleukin-18 (IL18) showed the strongest evidence for association with epithelial ovarian cancer in a gene-by-gene analysis (P = 0.002) with a <25% chance of being a false-positive finding (q value = 0.240). Using a multivariate model search algorithm over 11 IL18 tagging SNPs, we found that the association was best modeled by rs1834481. Further, this SNP uniquely tagged a significantly associated IL18 haplotype and there was an increased risk of epithelial ovarian cancer per rs1834481 allele (odds ratio, 1.24; 95% confidence interval, 1.06-1.45). In a replication stage, 12 independent studies from the Ovarian Cancer Association Consortium (OCAC) genotyped rs1834481 in an additional 5,877 cases and 7,791 controls. The fixed effects estimate per rs1834481 allele was null (odds ratio, 0.99; 95% confidence interval, 0.94-1.05) when data from the 12 OCAC studies were combined. The effect estimate remained unchanged with the addition of the initial North Carolina Ovarian Cancer Study data. This analysis shows the importance of consortia, like the OCAC, in either confirming or refuting the validity of putative findings in studies with smaller sample sizes. (Cancer Epidemiol Biomarkers Prev 2008;17(12):3567-72).


Assuntos
Interleucina-18/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , North Carolina , População Branca/genética
10.
Cancer Res ; 66(20): 10220-6, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17047088

RESUMO

Somatic alteration of the RB1 gene is common in several types of cancer, and germ-line variants are implicated in others. We have used a single nucleotide polymorphism (SNP) tagging approach to evaluate the association between common variants (SNP) in RB1 and risks of invasive ovarian cancer. We genotyped 11 tagging SNPs in three ovarian case-control studies from the United Kingdom, United States, and Denmark, comprising >1500 cases and 4,800 controls. Two SNPs showed significant association with ovarian cancer risk: carriers of the minor allele of rs2854344 were at reduced risk compared with the common homozygotes [odds ratio (OR), 0.73; 95% confidence interval (95% CI), 0.61-0.89; P = 0.0009 dominant model]. Similarly, the minor allele of rs4151620 was found to be associated with reduced risk (rare versus common homozygote; OR, 0.19; 95% CI, 0.07-0.53; P = 0.00005 recessive model). After adjusting for multiple testing, the most significant association (rs4151620) was P = 0.001. A global test comparing common haplotype frequencies in cases and controls was of borderline significance (P(8df) = 0.04). There are no common coding SNPs in the RB1 gene. However, intron 17 of RB1 contains the open reading frame for the P2RY5 gene, and rs4151620 is perfectly correlated with rs2227311, which is located in the 5'-untranslated region of P2RY5 and is predicted to affect P2RY5 transcription. rs2854344 has been reported previously to be associated with breast cancer risk. The possible associations of rs2854344 and rs4151620 with ovarian cancer risk warrant confirmation in independent case-control studies before studies on their biological mode of action.


Assuntos
Neoplasias Ovarianas/genética , Proteína do Retinoblastoma/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Invasividade Neoplásica , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único
11.
Hum Mutat ; 28(12): 1207-15, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17688236

RESUMO

A total of 283 epithelial ovarian cancer families from the United Kingdom (UK) and the United States (US) were screened for coding sequence changes and large genomic alterations (rearrangements and deletions) in the BRCA1 and BRCA2 genes. Deleterious BRCA1 mutations were identified in 104 families (37%) and BRCA2 mutations in 25 families (9%). Of the 104 BRCA1 mutations, 12 were large genomic alterations; thus this type of change represented 12% of all BRCA1 mutations. Six families carried a previously described exon 13 duplication, known to be a UK founder mutation. The remaining six BRCA1 genomic alterations were previously unreported and comprised five deletions and an amplification of exon 15. One of the 25 BRCA2 mutations identified was a large genomic deletion of exons 19-20. The prevalence of BRCA1/2 mutations correlated with the extent of ovarian and breast cancer in families. Of 37 families containing more than two ovarian cancer cases and at least one breast cancer case with diagnosis at less than 60 years of age, 30 (81%) had a BRCA1/2 mutation. The mutation prevalence was appreciably less in families without breast cancer; mutations were found in only 38 out of 141 families (27%) containing two ovarian cancer cases only, and in 37 out of 59 families (63%) containing three or more ovarian cancer cases. These data indicate that BRCA1 and BRCA2 are the major susceptibility genes for ovarian cancer but that other susceptibility genes may exist. Finally, it is likely that these data will be of clinical importance for individuals in families with a history of epithelial ovarian cancer, in providing accurate estimates of their disease risks.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Mutação , Neoplasias Ovarianas/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Análise Mutacional de DNA , Éxons/genética , Saúde da Família , Feminino , Predisposição Genética para Doença , Testes Genéticos , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Deleção de Sequência , Reino Unido , Estados Unidos
12.
Hum Mutat ; 28(5): 525-6, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17397054

RESUMO

Misdiagnosis of a germline mutation associated with an inherited disease syndrome can have serious implications for the clinical management of patients. A false negative diagnosis (mutation missed by genetic screening) limits decision making about intervention strategies within families. More serious is the consequence of a false positive diagnosis (genetic test suggesting a mutation is present when it is not). This could lead to an individual, falsely diagnosed as a mutation carrier, undergoing unnecessary clinical intervention, possibly involving risk-reducing surgery. As part of screening 283 ovarian cancer families for BRCA1 mutations, we used two different methods (mutation specific PCR and multiplex ligation-dependent probe amplification) to screen for a known rearrangement mutation L78833.1:g.44369_50449dup (ins6kbEx13). We found false positive and false negative results in several families. We then tested 61 known carriers or non-carriers from an epidemiological study of BRCA1 and BRCA2 mutation carriers (the EMBRACE study). These data highlight the need for caution when interpreting analyses of the ins6kbEx13 mutation and similar mutations, where characterising the exact sequence alteration for a deleterious mutation is not a part of the routine genetic test.


Assuntos
Genes BRCA1 , Testes Genéticos , Mutação em Linhagem Germinativa , Reações Falso-Negativas , Reações Falso-Positivas , Feminino , Triagem de Portadores Genéticos , Humanos , Masculino , Neoplasias Ovarianas/genética , Linhagem , Reação em Cadeia da Polimerase
13.
Cancer Epidemiol Biomarkers Prev ; 16(12): 2557-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18086758

RESUMO

Although some high-risk ovarian cancer genes have been identified, it is likely that common low penetrance alleles exist that confer some increase in ovarian cancer risk. We have genotyped nine putative functional single-nucleotide polymorphisms (SNP) in genes involved in steroid hormone synthesis (SRD5A2, CYP19A1, HSB17B1, and HSD17B4) and DNA repair (XRCC2, XRCC3, BRCA2, and RAD52) using two Australian ovarian cancer case-control studies, comprising a total of 1,466 cases and 1,821 controls of Caucasian origin. Genotype frequencies in cases and controls were compared using logistic regression. The only SNP we found to be associated with ovarian cancer risk in both of these two studies was SRD5A2 V89L (rs523349), which showed a significant trend of increasing risk per rare allele (P = 0.00002). We then genotyped another SNP in this gene (rs632148; r(2) = 0.945 with V89L) in an attempt to validate this finding in an independent set of 1,479 cases and 2,452 controls from United Kingdom, United States, and Denmark. There was no association between rs632148 and ovarian cancer risk in the validation samples, and overall, there was no significant heterogeneity between the results of the five studies. Further analyses of SNPs in this gene are therefore warranted to determine whether SRD5A2 plays a role in ovarian cancer predisposition.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA/genética , Hormônios Esteroides Gonadais/metabolismo , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Austrália , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Hormônios Esteroides Gonadais/genética , Humanos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fatores de Risco
14.
Cancer Epidemiol Biomarkers Prev ; 15(2): 359-63, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16492929

RESUMO

BACKGROUND: First-degree relatives of patients with breast or ovarian cancer have increased risks for these cancers. Little is known about how their risks vary with the patient's cancer site, carrier status for predisposing genetic mutations, or age at cancer diagnosis. METHODS: We evaluated breast and ovarian cancer incidence in 2,935 female first-degree relatives of non-Hispanic White female patients with incident invasive cancers of the breast (n = 669) or ovary (n = 339) who were recruited from a population-based cancer registry in northern California. Breast cancer patients were tested for BRCA1 and BRCA2 mutations. Ovarian cancer patients were tested for BRCA1 mutations. We estimated standardized incidence ratios (SIR) and 95% confidence intervals (95% CI) for breast and ovarian cancer among the relatives according to the patient's mutation status, cancer site, and age at cancer diagnosis. RESULTS: In families of patients who were negative or untested for BRCA1 or BRCA2 mutations, risks were elevated only for the patient's cancer site. The breast cancer SIR was 1.5 (95% CI, 1.2-1.8) for relatives of breast cancer patients, compared with 1.1 (95% CI, 0.8-1.6) for relatives of ovarian cancer patients (P = 0.12 for difference by patient's cancer site). The ovarian cancer SIR was 0.9 (95% CI, 0.5-1.4) for relatives of breast cancer patients, compared with 1.9 (95% CI, 1.0-4.0) for relatives of ovarian cancer patients (P = 0.04 for difference by site). In families of BRCA1-positive patients, relatives' risks also correlated with the patient's cancer site. The breast cancer SIR was 10.6 (95% CI, 5.2-21.6) for relatives of breast cancer patients, compared with 3.3 (95% CI, 1.4-7.3) for relatives of ovarian cancer patients (two-sided P = 0.02 for difference by site). The ovarian cancer SIR was 7.9 (95% CI, 1.2-53.0) for relatives of breast cancer patients, compared with 11.3 (3.6-35.9) for relatives of ovarian cancer patients (two-sided P = 0.37 for difference by site). Relatives' risks were independent of patients' ages at diagnosis, with one exception: In families ascertained through a breast cancer patient without BRCA mutations, breast cancer risks were higher if the patient had been diagnosed before age 40 years. CONCLUSION: In families of patients with and without BRCA1 mutations, breast and ovarian cancer risks correlate with the patient's cancer site. Moreover, in families of breast cancer patients without BRCA mutations, breast cancer risk depends on the patient's age at diagnosis. These patterns support the presence of genes that modify risk specific to cancer site, in both carriers and noncarriers of BRCA1 and BRCA2 mutations.


Assuntos
Neoplasias da Mama/genética , Genes BRCA1 , Genes BRCA2 , Neoplasias Ovarianas/genética , Adulto , Idade de Início , Idoso , Neoplasias da Mama/epidemiologia , Éxons , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Incidência , Pessoa de Meia-Idade , Neoplasias Ovarianas/epidemiologia , Risco
15.
Cancer Res ; 63(2): 417-23, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12543797

RESUMO

Metaphase comparative genomic hybridization was used to analyze the spectrum of genetic alterations in 141 epithelial ovarian cancers from BRCA1 and BRCA2 mutation carriers, individuals with familial non-BRCA1/2 epithelial ovarian cancer, and women with nonfamilial epithelial ovarian cancer. Multiple genetic alterations were identified in almost all tumors. The high frequency with which some alterations were identified suggests the location of genes that are commonly altered during ovarian tumor development. In multiple chromosome regions, there were significant differences in alteration frequency between the four tumor types suggesting that BRCA1/2 mutation status and a family history of ovarian cancer influences the somatic genetic pathway of ovarian cancer progression. These findings were supported by hierarchical cluster analysis, which identified genetic events that tend to occur together during tumorigenesis and several alterations that were specific to tumors of a particular type. In addition, some genetic alterations were strongly associated with differences in tumor differentiation and disease stage. Taken together, these data provide molecular genetic evidence to support previous findings from histopathological studies, which suggest that clinical features of ovarian and breast tumors differ with respect to BRCA1/2 mutation status and/or cancer family history.


Assuntos
Genes BRCA1 , Genes BRCA2 , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Aberrações Cromossômicas , Feminino , Heterozigoto , Humanos , Hibridização de Ácido Nucleico
16.
BMC Womens Health ; 5: 8, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-15918899

RESUMO

BACKGROUND: Dysregulation of the human Transforming Acidic Coiled Coil (TACC) genes is thought to be important in the development and progression of multiple myeloma, breast and gastric cancer. Recent, large-scale genomic analysis and Serial Analysis of Gene Expression data suggest that TACC1 and TACC3 may also be involved in the etiology of ovarian tumors from both familial and sporadic cases. Therefore, the aim of this study was to determine the occurrence of alterations of these TACCs in ovarian cancer. METHODS: Detection and scoring of TACC1 and TACC3 expression was performed by immunohistochemical analysis of the T-BO-1 tissue/tumor microarray slide from the Cooperative Human Tissue Network, Tissue Array Research Program (TARP) of the National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. Tumors were categorized as either positive (greater than 10% of cells staining) or negative. Statistical analysis was performed using Fisher's exact test and p < 0.05 (single comparisons), and p < 0.02 (multiple comparisons) were considered to be significant. Transgenomics WAVE high performance liquid chromatography (dHPLC) was used to pre-screen the TACC3 gene in constitutional DNA from ovarian cancer patients and their unaffected relatives from 76 families from the Gilda Radner Familial Ovarian Cancer Registry. All variant patterns were then sequenced. RESULTS: This study demonstrated absence of at least one or both TACC proteins in 78.5% (51/65) of ovarian tumors tested, with TACC3 loss observed in 67.7% of tumors. The distribution pattern of expression of the two TACC proteins was different, with TACC3 loss being more common in serous papillary carcinoma compared with clear cell carcinomas, while TACC1 staining was less frequent in endometroid than in serous papillary tumor cores. In addition, we identified two constitutional mutations in the TACC3 gene in patients with ovarian cancer from the Gilda Radner Familial Ovarian Cancer Registry. These patients had previously tested negative for mutations in known ovarian cancer predisposing genes. CONCLUSION: When combined, our data suggest that aberrations of TACC genes, and TACC3 in particular, underlie a significant proportion of ovarian cancers. Thus, TACC3 could be a hitherto unknown endogenous factor that contributes to ovarian tumorigenesis.

17.
Cancer Epidemiol Biomarkers Prev ; 13(12): 2078-83, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15598764

RESUMO

Data from several countries indicate that 1% to 2% of Ashkenazi Jews carry a pathogenic ancestral mutation of the tumor suppressor gene BRCA1. However, the prevalence of BRCA1 mutations among non-Ashkenazi Whites is uncertain. We estimated mutation carrier prevalence in U.S. non-Hispanic Whites, specific for Ashkenazi status, using data from two population-based series of San Francisco Bay Area patients with invasive cancers of the breast or ovary, and data on breast and ovarian cancer risks in Ashkenazi and non-Ashkenazi carriers. Assuming that 90% of the BRCA1 mutations were detected, we estimate a carrier prevalence of 0.24% (95% confidence interval, 0.15-0.39%) in non-Ashkenazi Whites, and 1.2% (95% confidence interval, 0.5-2.6%) in Ashkenazim. When combined with U.S. White census counts, these prevalence estimates suggest that approximately 550,513 U.S. Whites (506,206 non-Ashkenazim and 44,307 Ashkenazim) carry germ line BRCA1 mutations. These estimates may be useful in guiding resource allocation for genetic testing and genetic counseling and in planning preventive interventions.


Assuntos
Genes BRCA1 , Mutação em Linhagem Germinativa , Programa de SEER , População Branca , Adulto , Idoso , Neoplasias da Mama/genética , California/epidemiologia , Análise Mutacional de DNA , Feminino , Aconselhamento Genético , Humanos , Judeus , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Prevalência , Alocação de Recursos
18.
Cancer Epidemiol Biomarkers Prev ; 11(9): 809-14, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12223423

RESUMO

Genomic DNA isolated from archived paraffin-embedded tissues (PETs) has important applicability in genetic epidemiological studies. To determine the accuracy of the sequence data, using DNA derived from PET among patients with known mutations characterized from blood, we conducted a blinded factorial experiment to simultaneously examine the influence of mutation type, age of the PET, PCR product type, and Taq DNA polymerase on BRCA1 gene mutation detection. The probability of detecting sequencing artifacts was also investigated. We found that: (a) gene detection was most accurate for newer PET; (b) high fidelity Taq with shorter PCR amplicon length yielded the highest mutation detection success rate and lowest artifact rate; and (c) base substitutions were more often correctly identified than frameshift mutations or wild-type sequences. We concluded that DNA derived from PET that archived for less than 18 years can be used successfully for detecting BRCA1 gene mutations if quality control is strictly maintained.


Assuntos
DNA de Neoplasias/genética , Genes BRCA1 , Análise de Sequência de DNA/métodos , Análise Mutacional de DNA , DNA de Neoplasias/análise , Feminino , Marcadores Genéticos , Humanos , Inclusão em Parafina
19.
Cancer Epidemiol Biomarkers Prev ; 13(10): 1589-94, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15466974

RESUMO

STK15 is a putative oncogene that codes for a centrosome-associated, serine/threonine kinase, the normal function of which is to ensure accurate segregation of chromosomes during mitosis. Amplification of STK15 has been reported in ovarian tumors, suggesting a role in ovarian cancer pathology. STK15 is polymorphic with two single nucleotide substitutions (449t/a and 527g/a) in evolutionarily conserved regions causing amino acid changes (F31I and V57I). Two other nucleotide substitutions (287c/g and 1891g/c) of unknown significance are in 5' and 3' untranslated regions (UTR), respectively. To learn more about the involvement of STK15 in ovarian cancer, we genotyped and haplotyped these polymorphisms in three population-based ovarian cancer case-control studies from the United Kingdom, United States, and Denmark with 1,821 combined cases and 2,467 combined controls and calculated risks for developing ovarian cancer. Genotypes of individual polymorphisms in control groups of the United Kingdom, United States, and Denmark conformed to Hardy-Weinberg equilibrium. In combined cases and combined controls, rare allele frequencies were 0.23 and 0.21 for I31, 0.16 and 0.17 for I57, 0.08 and 0.07 for 5' UTR g, and 0.25 and 0.24 for 3' UTR c, respectively. Using FF common homozygotes of F31I as comparator, there was increased ovarian cancer risk to FI heterozygotes (odds ratio, 1.18; 95% confidence interval, 1.01-1.36), II homozygotes (odds ratio, 1.25; 95% confidence interval, 0.89-1.75), and I31 allele carriers (odds ratio, 1.17; 95% confidence interval, 1.02-1.35) in the combined group data. For either V57I, 5' UTR C/G, or 3' UTR G/C, all genotypic ovarian cancer risks were essentially in unity relative to their respective common homozygotes, VV, cc, or gg. Haplotype analysis of combined group data revealed seven haplotypes with frequencies between 0.02 and 0.5, with c-F-V-g the most common. None of the haplotype-specific risks significantly differed from unity relative to c-F-V-g. These results suggest a model of dominant inheritance of ovarian cancer risk by the I31 allele of F31I and that the I31 allele may be a common ovarian cancer susceptibility allele of low penetrance.


Assuntos
Predisposição Genética para Doença , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/genética , Polimorfismo Genético , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Aurora Quinase A , Aurora Quinases , Estudos de Casos e Controles , Dinamarca/epidemiologia , Feminino , Genótipo , Haplótipos , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/epidemiologia , Fatores de Risco , Reino Unido/epidemiologia , Estados Unidos/epidemiologia
20.
Cancer Genet Cytogenet ; 153(2): 177-80, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15350310

RESUMO

Many families with multiple cases of ovarian cancer, breast cancer, or both segregate inherited mutations in one allele of the tumor suppressor gene BRCA1. Genetic testing is used to assess cancer risk; however, testing can detect missense DNA alterations, called unclassified variants, of unknown functional and biological significance with uncertain risk implications. Some missense variants at the transcriptional activation domain of BRCA1 of cancer patients inactivate transcriptional activity of BRCA1, providing evidence that they are deleterious. We identified the variants V1804D and M1628T at the transcriptional activation domain of BRCA1 of two ovarian cancer patients without a family history of ovarian or breast cancer. To test if these residues are critical for transcriptional activation, we created V1804D and M1628T independently in BRCA1 cDNA via site-directed mutagenesis in a mammalian expression vector, pcDNA3.1. Wild-type, mutant, and empty vector constructs were tested in human kidney 293 cells using a p53-responsive luciferase reporter. M1628T had the same transcriptional activity as wild-type BRCA1 but V1804D and the empty vector control showed a 60% reduction. This indicates that V1804D is deleterious but M1628T is not.


Assuntos
Proteína BRCA1/genética , Mutação de Sentido Incorreto/genética , Transcrição Gênica/genética , Substituição de Aminoácidos , Neoplasias da Mama/genética , Estudos de Casos e Controles , Análise Mutacional de DNA/métodos , Feminino , Genes Reporter , Variação Genética/genética , Humanos , Luciferases/genética , Neoplasias Ovarianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA