Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 109(10): 1782-1795, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39143855

RESUMO

The use of acute carbon monoxide inhalation (COi) and hot water immersion (HWI) are of growing interest as interventions to stimulate erythropoietin (EPO) production. However, whether EPO production is further augmented when combining these stressors and whether there are sex differences in this response are poorly understood. Therefore, we measured circulating EPO concentration in response to acute COi and HWI independently and in combination and determined whether the responses were altered by sex. Participants completed three study visits-COi, HWI, and combined COi and HWI-separated by 1 week in a randomized, balanced, crossover design. Renal blood velocity was measured during all interventions, and carboxyhaemoglobin was measured during and after COi. Serum samples were analysed every hour for 6 h post-intervention for EPO concentration. HWI decreased renal blood velocity (46.2 cm/s to 36.2 cm/s) (P < 0.0001), and COi increased carboxyhaemoglobin (1.5%-12.8%) (P < 0.0001) without changing renal blood velocity (46.4-45.2 cm/s) (P = 0.4456). All three interventions increased peak EPO concentration from baseline (COi: 6.02-9.74 mIU/mL; HWI: 6.80-11.10 mIU/mL; COi + HWI: 6.71-10.91 mIU/mL) (P = 0.0048) and to the same extent (P = 0.3505). On average, females increased EPO while males did not in response to COi (females: 6.17 mIU/mL; males: 1.27 mIU/mL) (P = 0.0010), HWI (females: 6.47 mIU/mL; males: 2.14 mIU/mL) (P = 0.0104), and COi and HWI (females: 6.65 mIU/mL; males: 1.76 mIU/mL) (P = 0.0256). These data emphasize that combining these interventions does not augment EPO secretion and that these interventions may work better in females.


Assuntos
Monóxido de Carbono , Estudos Cross-Over , Eritropoetina , Humanos , Masculino , Feminino , Eritropoetina/sangue , Monóxido de Carbono/metabolismo , Adulto , Adulto Jovem , Carboxihemoglobina/metabolismo , Carboxihemoglobina/análise , Temperatura Alta , Imersão , Fatores Sexuais , Água/metabolismo , Velocidade do Fluxo Sanguíneo/fisiologia
2.
J Physiol ; 600(7): 1541-1553, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043424

RESUMO

The foramen ovale is an essential component of the fetal circulation contributing to oxygenation and carbon dioxide elimination that remains patent under certain circumstances in ∼30% of the healthy adult population, without major negative sequelae in most. Adults with a patent foramen ovale (PFO) have a greater tendency to develop symptoms of acute mountain sickness and high-altitude pulmonary oedema upon ascent to high altitude, and PFO presence is associated with worse cardiopulmonary function in chronic mountain sickness. This increase in altitude illness prevalence may be related to dysregulated cerebral blood flow associated with altered respiratory chemoreflex sensitivity; however, the mechanisms remain to be elucidated. Interestingly, men with a PFO appear to have a shift in thermoregulatory control to higher internal temperatures, both at rest and during exercise, and they have blunted thermal hyperpnoea. The teleological 'reason' for this thermoregulatory shift is unclear, but the shift of ∼0.5°C in core body temperature does not appear to be sufficient to have any significant negative consequences in terms of risk of heat illness. Further work in this area is needed, particularly in women, to evaluate mechanisms of heat storage and dissipation in these individuals compared to people without a PFO. Consequences of a PFO in SCUBA divers include a greater incidence of unprovoked decompression sickness, but whether PFO is beneficial or detrimental to breath hold diving remains unexplored. Whether PFO presence will explain interindividual variability in responses to, and consequences from, other environmental stressors such as spaceflight remain entirely unknown.


Assuntos
Doença da Altitude , Doença da Descompressão , Mergulho , Forame Oval Patente , Hipertensão Pulmonar , Adulto , Doença da Descompressão/complicações , Feminino , Forame Oval Patente/complicações , Humanos , Hipertensão Pulmonar/complicações , Masculino
3.
Exp Physiol ; 107(2): 122-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907608

RESUMO

NEW FINDINGS: What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 h of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This suggests hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in ∼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary oedema (HAPE) is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia per se is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 h of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response.


Assuntos
Doença da Altitude , Forame Oval Patente , Hipertensão Pulmonar , Altitude , Feminino , Humanos , Hipóxia
4.
J Sci Med Sport ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39209689

RESUMO

OBJECTIVES: To determine the influence of a patent foramen ovale and fibroblast growth factor-21 on core temperature (Tc) responses in SCUBA divers. Additionally, we aimed to quantify the individual and combined influences of wetsuit thickness and anthropometric data on Tc changes during the dives. DESIGN: An experimental study comparing the Tc responses between divers with (n = 17) and without a patent foramen ovale (n = 14). METHODS: A total of 31 divers participated in the study. Tc was measured pre- and post-dive in 17-18 °C sea water using a telemetric pill. Additionally, blood was drawn pre-dive and ~1-2 h post-dive for measurement of fibroblast growth factor-21. RESULTS: There was no influence of a patent foramen ovale on the Tc responses during SCUBA diving in either dive profile (p > 0.05). Additionally, there was no influence of SCUBA diving on fibroblast growth factor-21 concentrations (p > 0.05). The strongest positive and significant associations with the ∆Tc/min were found when multiplying wetsuit thickness in millimeters by body mass (r2 = 0.3147, p = 0.0010), BMI (r2 = 0.3123, p = 0.0011), and body surface area (r2 = 0.2877, p = 0.0019). There was a significant, negative linear relationship between the body surface area to mass ratio and ∆Tc/min (r2 = 0.2812, p = 0.0032). CONCLUSIONS: These data suggest that Tc regulation during recreational SCUBA diving can be facilitated in part by the appropriate choice of wetsuit thickness for a given set of anthropometric characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA