Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 554(7691): 183-188, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29364874

RESUMO

The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.


Assuntos
Acinonyx/psicologia , Equidae/fisiologia , Leões/fisiologia , Comportamento Predatório/fisiologia , Ruminantes/fisiologia , Aceleração , Animais , Botsuana , Feminino , Masculino , Músculo Esquelético/fisiologia , Corrida/fisiologia
2.
J Exp Biol ; 218(Pt 18): 2856-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206354

RESUMO

Skinned fibres have advantages for comparing the muscle properties of different animal species because they can be prepared from a needle biopsy taken under field conditions. However, it is not clear how well the contractile properties of skinned fibres reflect the properties of the muscle fibres in vivo. Here, we compare the mechanical performance of intact fibre bundles and skinned fibres from muscle of the same animals. This is the first such direct comparison. Maximum power and isometric force were measured at 25 °C using peroneus longus (PL) and extensor digiti-V (ED-V) muscles from wild rabbits (Oryctolagus cuniculus). More than 90% of the fibres in these muscles are fast-twitch, type 2 fibres. Maximum power was measured in force-clamp experiments. We show that maximum power per volume was the same in intact (121.3 ± 16.1 W l(-1), mean ± s.e.m.; N=16) and skinned (122.6 ± 4.6 W l(-1); N=141) fibres. Maximum relative power (power/F(IM) Lo, where F(IM) is maximum isometric force and Lo is standard fibre length) was also similar in intact (0.645 ± 0.037; N=16) and skinned (0.589 ± 0.019; N=141) fibres. Relative power is independent of volume and thus not subject to errors in measurement of volume. Finally, maximum isometric force per cross-sectional area was also found to be the same for intact and skinned fibres (181.9 kPa ± 19.1; N=16; 207.8 kPa ± 4.8; N=141, respectively). These results contrast with previous measurements of performance at lower temperatures where skinned fibres produce much less power than intact fibres from both mammals and non-mammalian species.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Coelhos/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Técnicas In Vitro , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA