RESUMO
The presence of Listeria monocytogenes in piggery effluents intended for irrigation crops may be a source of bacterial dissemination in agriculture. The occurrence and diversity of L. monocytogenes in the farm environment were examined in two pig manure treatment systems (S1 and S2). Samples collected over the course of one year consisted of manure, the liquid fraction of treated manure (lagoon effluent), and soil surrounding the lagoon. L. monocytogenes was enumerated using the Most Probable Number (MPN) method, serotyped by PCR, genotyped by pulsed-field gel electrophoresis (PFGE), and sequenced for multilocus sequence typing (MLST). L. monocytogenes was detected in 92% of manure samples and in approximately 50% of lagoon effluent and soil samples. Concentrations ranged between 5 and 103 MPN 100| |mL-1. Serogroups IIa, IIb, and IVb were identified. Diversity was high with 44 PFGE profiles (252 isolates) and 17 clonal complexes (CCs) (96 isolates) with higher diversity in manure at site S1 supplied by four farms. Some PFGE profiles and CCs identified in manure or in pig feces from a previous study were also detected in lagoons and/or soil, reflecting pig L. monocytogenes circulation throughout the manure treatment and in the vicinity of the sampling sites. However, some PFGE profiles and CCs were only found in the lagoon and/or in soil, suggesting an origin other than pigs. The present study highlights the limited ability of biological treatments to eliminate L. monocytogenes from pig manure. The persistence of some PFGE profiles and CCs throughout the year in the lagoon and soil shows the ability of L. monocytogenes to survive in this type of environment.
Assuntos
Listeria monocytogenes , Suínos , Animais , Listeria monocytogenes/genética , Esterco , Tipagem de Sequências Multilocus , Eletroforese em Gel de Campo Pulsado , França , SoloRESUMO
The main objective of this study was to develop a methodology to predict the hydrogen sulphide content of raw biogas produced during anaerobic mono-digestion of a bioenergy feedstock. Detailed chemical and biological analyses were made on 37 different feedstocks originating from urban wastewater treatment plants, farms, agri-food facilities and municipal wastes. Total sulphur content ranged from 1 to 29.6 mg S/kg of total solids, and 66% of the feedstocks analysed contained less than 5 mg S/kg of total solids. The biochemical methanogenic potential and biochemical biogas potential of each feedstock combined with its S content were used to predict appearance of H(2)S in the raw biogas. A model to link H(2)S in biogas with the carbon:sulphur ratio was established. Based on this model, a minimum carbon:sulphur ratio of 40 is required in feedstock to limit the concentration of hydrogen sulphide in raw biogas to less than 2% (volume/volume).