Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Virulence ; 14(1): 2150449, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36419223

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Virulência , Tuberculose/microbiologia , Fatores de Virulência/metabolismo , Interações Hospedeiro-Patógeno
2.
J Vis Exp ; (173)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34398153

RESUMO

Phagocytosis is an orchestrated process that involves distinct steps: recognition, binding, and internalization. Professional phagocytes take up Leishmania parasites by phagocytosis, consisting of recognizing ligands on parasite surfaces by multiple host cell receptors. Binding of Leishmania to macrophage membranes occurs through complement receptor type 1 (CR1) and complement receptor type 3 (CR3) and Pattern Recognition Receptors. Lipophosphoglycan (LPG) and 63 kDa glycoprotein (gp63) are the main ligands involved in macrophage-Leishmania interactions. Following the initial recognition of parasite ligands by host cell receptors, parasites become internalized, survive, and multiply within parasitophorous vacuoles. The maturation process of Leishmania-induced vacuoles involves the acquisition of molecules from intracellular vesicles, including monomeric G protein Rab 5 and Rab 7, lysosomal associated membrane protein 1 (LAMP-1), lysosomal associated membrane protein 2 (LAMP-2), and microtubule-associated protein 1A/1B-light chain 3 (LC3). Here, we describe methods to evaluate the early events occurring during Leishmania interaction with the host cells using confocal microscopy, including (i) binding (ii) internalization, and (iii) phagosome maturation. By adding to the body of knowledge surrounding these determinants of infection outcome, we hope to improve the understanding of the pathogenesis of Leishmania infection and support the eventual search for novel chemotherapeutic targets.


Assuntos
Leishmania , Leishmaniose , Humanos , Macrófagos , Microscopia Confocal , Fagocitose
3.
Microorganisms ; 9(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069389

RESUMO

The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.

4.
Front Cell Infect Microbiol ; 10: 558324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251156

RESUMO

Zika virus (ZIKV), a member of the Flaviviridae family, was brought into the spotlight due to its widespread and increased pathogenicity, including Guillain-Barré syndrome and microcephaly. Neural progenitor cells (NPCs), which are multipotent cells capable of differentiating into the major neural phenotypes, are very susceptible to ZIKV infection. Given the complications of ZIKV infection and potential harm to public health, effective treatment options are urgently needed. Betulinic acid (BA), an abundant terpenoid of the lupane group, displays several biological activities, including neuroprotective effects. Here we demonstrate that Sox2+ NPCs, which are highly susceptible to ZIKV when compared to their neuronal counterparts, are protected against ZIKV-induced cell death when treated with BA. Similarly, the population of Sox2+ and Casp3+ NPCs found in ZIKV-infected cerebral organoids was significantly higher in the presence of BA than in untreated controls. Moreover, well-preserved structures were found in BA-treated organoids in contrast to ZIKV-infected controls. Bioinformatics analysis indicated Akt pathway activation by BA treatment. This was confirmed by phosphorylated Akt analysis, both in BA-treated NPCs and brain organoids, as shown by immunoblotting and immunofluorescence analyses, respectively. Taken together, these data suggest a neuroprotective role of BA in ZIKV-infected NPCs.


Assuntos
Microcefalia , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Humanos , Triterpenos Pentacíclicos , Infecção por Zika virus/tratamento farmacológico , Ácido Betulínico
5.
Front Microbiol ; 9: 1890, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158914

RESUMO

CBA mouse macrophages control Leishmania major infection yet are permissive to Leishmania amazonensis. Few studies have been conducted to assess the role played by autophagy in Leishmania infection. Therefore, we assessed whether the autophagic response of infected macrophages may account for the differential behavior of these two parasite strains. After 24 h of infection, the LC3-II/Act ratio increased in both L. amazonensis- and L. major-infected macrophages compared to uninfected controls, but less than in chloroquine-treated cells. This suggests that L. amazonensis and L. major activate autophagy in infected macrophages, without altering the autophagic flux. Furthermore, L. major-infected cells exhibited higher percentages of DQ-BSA-labeled parasitophorous vacuoles (50%) than those infected by L. amazonensis (25%). However, L. major- and L. amazonensis-induced parasitophorous vacuoles accumulated LysoTracker similarly, indicating that the acidity in both compartment was equivalent. At as early as 30 min, endogenous LC3 was recruited to both L. amazonensis- and L. major-induced parasitophorous vacuoles, while after 24 h a greater percentage of LC3 positive vacuoles was observed in L. amazonensis-infected cells (42.36%) compared to those infected by L. major (18.10%). Noteworthy, principal component analysis (PCA) and an hierarchical cluster analysis completely discriminated L. major-infected macrophages from L. amazonensis-infected cells accordingly to infection intensity and autophagic features of parasite-induced vacuoles. Then, we evaluated whether the modulation of autophagy exerted an influence on parasite infection in macrophages. No significant changes were observed in both infection rate or parasite load in macrophages treated with the autophagic inhibitors wortmannin, chloroquine or VPS34-IN1, as well as with the autophagic inducers rapamycin or physiological starvation, in comparison to untreated control cells. Interestingly, both autophagic inducers enhanced intracellular L. amazonensis and L. major viability, while the pharmacological inhibition of autophagy exerted no effects on intracellular parasite viability. We also demonstrated that autophagy induction reduced NO production by L. amazonensis- and L. major-infected macrophages but not alters arginase activity. These findings provide evidence that although L. amazonensis-induced parasitophorous vacuoles recruit LC3 more markedly, L. amazonensis and L. major similarly activate the autophagic pathway in CBA macrophages. Interestingly, the exogenous induction of autophagy favors L. major intracellular viability to a greater extent than L. amazonensis related to a reduction in the levels of NO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA