RESUMO
Polycyclic Aromatic Hydrocarbons (PAHs) represent persistent environmental pollutants ubiquitously distributed in the environment. Their presence alongside various other contaminants gives rise to intricate interactions, culminating in profound deleterious consequences. The combination effects of different PAH mixtures on biota remains a relatively unexplored domain. Recent studies have harnessed the exceptional sensitivity of metabolomic techniques to unveil the significant ecotoxicological perils of PAH pollution confronting both human populations and ecosystems. This article furnishes a comprehensive overview of current literature focused on the metabolic repercussions stemming from exposure to complex mixtures of PAHs or PAH-pollution sources using metabolomics approaches. These insights are obtained through a wide range of models, including in vitro assessments, animal studies, investigations on human subjects, botanical specimens, and soil environments. The findings underscore that PAH mixtures induce cellular stress responses and systemic effects, leading to metabolic dysregulations in amino acids, carbohydrates, lipids, and other key metabolites (e.g., organic acids, purines), with specific variations observed based on the organism and PAH compounds involved. Additionally, the ecological consequences of PAH pollutants on plant and soil microbial responses are emphasized, revealing significant changes in stress-related metabolites and nutrient cycling in soil ecosystems. The complex interplay of various PAHs and their metabolic effects on several models, as elucidated through metabolomics, highlight the urgency of further research and the need for comprehensive strategies to mitigate the risks posed by these widespread environmental pollutants.
Assuntos
Ecotoxicologia , Poluentes Ambientais , Metabolômica , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Humanos , Animais , Poluentes Ambientais/toxicidadeRESUMO
Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.
Assuntos
3,4-Metilenodioxianfetamina/análogos & derivados , Butirofenonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Metilaminas/toxicidade , Propiofenonas/toxicidade , 3,4-Metilenodioxianfetamina/administração & dosagem , 3,4-Metilenodioxianfetamina/toxicidade , Animais , Autofagia/efeitos dos fármacos , Butirofenonas/administração & dosagem , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/patologia , Drogas Desenhadas/administração & dosagem , Drogas Desenhadas/toxicidade , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Masculino , Metilaminas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Propiofenonas/administração & dosagem , Ratos , Ratos WistarRESUMO
The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.
Assuntos
Endocanabinoides/metabolismo , Epigênese Genética , Neurogênese/genética , Animais , Canabinoides/farmacologia , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de SinaisRESUMO
During the last decades, we have witnessed unparalleled changes in human eating habits and lifestyle, intensely influenced by cultural and social pressures. Sports practice became strongly implemented in daily routines, and visits to the gym peaked, driven by the indulgence in intensive 'weight-loss programs'. The pledge of boasting a healthy and beautiful body instigates the use of very attractive 'fat burners', which are purportedly advertised as safe products, easily available in the market and expected to quickly reduce body weight. In this context, the slimming properties of 2,4-dinitrophenol (2,4-DNP) galvanised its use as a weight-loss product, despite the drug ban for human consumption in many countries since 1938, due to its adverse effects. The main symptoms associated with 2,4-DNP intoxication, including hyperthermia, tachycardia, decreased blood pressure, and acute renal failure, motivated a worldwide warning, issued by the Interpol Anti-Doping Unit in 2015, reinforcing its hazard. Information on the effects of 2,4-DNP mainly derive from the intoxication cases reported by emergency care units, for which there is no specific antidote or treatment. This review provides a comprehensive update on 2,4-DNP use, legislation and epidemiology, chemistry and analytical methodologies for drug determination in commercial products and biological samples, pharmacokinetics and pharmacodynamics, toxicological effects, and intoxication diagnosis and management.
Assuntos
2,4-Dinitrofenol/efeitos adversos , Fármacos Antiobesidade/efeitos adversos , Exposição Dietética/estatística & dados numéricos , 2,4-Dinitrofenol/toxicidade , Fármacos Antiobesidade/toxicidade , Dieta , Comportamento Alimentar , Redução de PesoRESUMO
New phenylethylamine derivatives are among the most commonly abused new psychoactive substances. They are synthesized and marketed in lieu of classical amphetaminic stimulants, with no previous safety testing. Our study aimed to determine the in vitro hepatotoxicity of two benzofurans [6-(2-aminopropyl)benzofuran (6-APB) and 5-(2-aminopropyl)benzofuran (5-APB)] that have been misused as 'legal highs'. Cellular viability was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, following 24-h drug exposure of human hepatoma HepaRG cells (EC50 2.62 mM 5-APB; 6.02 mM 6-APB), HepG2 cells (EC50 3.79 mM 5-APB; 8.18 mM 6-APB) and primary rat hepatocytes (EC50 964 µM 5-APB; 1.94 mM 6-APB). Co-incubation of primary hepatocytes, the most sensitive in vitro model, with CYP450 inhibitors revealed a role of metabolism, in particular by CYP3A4, in the toxic effects of both benzofurans. Also, 6-APB and 5-APB concentration-dependently enhanced oxidative stress (significantly increased reactive species and oxidized glutathione, and decreased reduced glutathione levels) and unsettled mitochondrial homeostasis, with disruption of mitochondrial membrane potential and decline of intracellular ATP. Evaluation of cell death mechanisms showed increased caspase-8, -9, and -3 activation, and nuclear morphological changes consistent with apoptosis; at concentrations higher than 2 mM, however, necrosis prevailed. Concentration-dependent formation of acidic vesicular organelles typical of autophagy was also observed for both drugs. Overall, 5-APB displayed higher hepatotoxicity than its 6-isomer. Our findings provide new insights into the potential hepatotoxicity of these so-called 'safe drugs' and highlight the putative risks associated with their use as psychostimulants.
Assuntos
Benzofuranos/toxicidade , Drogas Desenhadas/toxicidade , Hepatócitos/efeitos dos fármacos , Propilaminas/toxicidade , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Isomerismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismoRESUMO
Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 µM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.
Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Diferenciação Celular , Glioma/patologia , Indazóis/farmacologia , Indóis/farmacologia , Naftalenos/farmacologia , Neuroblastoma/patologia , Quinolinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Sobrevivência Celular , Glioma/tratamento farmacológico , Glioma/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Ratos , Células Tumorais CultivadasRESUMO
3-Methylmethcathinone (3-MMC or metaphedrone) has become one of the most popular recreational drugs worldwide after the ban of mephedrone, and was recently deemed responsible for several intoxications and deaths. This study aimed at assessing the hepatotoxicity of 3-MMC. For this purpose, Wistar rat hepatocytes were isolated by collagenase perfusion, cultured and exposed for 24 h at a concentration range varying from 31 nM to 10 mM 3-MMC. The modulatory effects of cytochrome P450 (CYP) inhibitors on 3-MMC hepatotoxicity were evaluated. 3-MMC-induced toxicity was perceived at the lysosome at lower concentrations (NOEC 312.5 µM), compared to mitochondria (NOEC 379.5 µM) and cytoplasmic membrane (NOEC 1.04 mM). Inhibition of CYP2D6 and CYP2E1 diminished 3-MMC cytotoxicity, yet for CYP2E1 inhibition this effect was only observed for concentrations up to 1.3 mM. A significant concentration-dependent increase of intracellular reactive species was observed from 10 µM 3-MMC on; a concentration-dependent decrease in antioxidant glutathione defences was also observed. At 10 µM, caspase-3, caspase-8, and caspase-9 activities were significantly elevated, corroborating the activation of both intrinsic and extrinsic apoptosis pathways. Nuclear morphology and formation of cytoplasmic acidic vacuoles suggest prevalence of necrosis and autophagy at concentrations higher than 10 µM. No significant alterations were observed in the mitochondrial membrane potential, but intracellular ATP significantly decreased at 100 µM. Our data point to a role of metabolism in the hepatotoxicity of 3-MMC, which seems to be triggered both by autophagic and apoptotic/necrotic mechanisms. This work is the first approach to better understand 3-MMC toxicology.
Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Metanfetamina/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Psicotrópicos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Metanfetamina/toxicidade , Cultura Primária de Células , Ratos WistarRESUMO
Benzofurans, also known by users as benzo fury or benzofury, are synthetic phenethylamines and constitute the third most prominent group of new psychoactive substances (NPS). As the use of these substances has been spread as an alternative to the classic illicit psychostimulants, such as amphetamines, their legal status was reviewed, resulting in an utter prohibition of these NPS in many countries worldwide. Herein, the prevalence of abuse, chemistry, biological effects, metabolism, and the potential harms and risky behaviors associated with the abuse of benzofurans are reviewed. The congeners of this group are mainly consumed recreationally at electronic dance music parties, in polydrug abuse settings. Benzofurans preferentially act by disturbing the functioning of serotonergic circuits, which induces their entactogenic and stimulant effects and is the reason behind the considerable number of recent benzo fury-related deaths. The slight interaction of these drugs with the dopaminergic system justifies the rewarding effects of these drugs. To date, published evidence on the mechanisms of toxicity of benzo fury is very limited but a body of research is now beginning to emerge revealing an alarming public health threat regarding the abuse of these NPS.
Assuntos
Benzofuranos/toxicidade , Uso Indevido de Medicamentos/tendências , Drogas Ilícitas/toxicidade , Psicotrópicos/toxicidade , Transtornos Relacionados ao Uso de Substâncias , Benzofuranos/metabolismo , Uso Indevido de Medicamentos/estatística & dados numéricos , Comportamentos de Risco à Saúde/efeitos dos fármacos , Humanos , Drogas Ilícitas/metabolismo , Psicotrópicos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/etiologia , Transtornos Relacionados ao Uso de Substâncias/psicologiaRESUMO
Cocaine (COC) is frequently consumed in polydrug abuse settings, and ethanol (EtOH) is the most prominent co-abused substance. Clinical data and experimental evidence suggest that the co-administration of COC with EtOH can be more cardiotoxic than EtOH or COC alone, but information on the molecular pathways involved is scarce. Since these data are crucial to potentiate the identification of therapeutic targets to treat intoxications, we sought to (i) elucidate the type of interaction that occurs between both substances, and (ii) assess the mechanisms implicated in the cardiotoxic effects elicited by COC combined with EtOH. For this purpose, H9c2 cardiomyocytes were exposed to COC (104 µM-6.5 mM) and EtOH (977 µM-4 M), individually or combined at a molar ratio based on blood concentrations of intoxicated abusers (COC 1: EtOH 9; 206 µM-110 mM). After 24 h, cell metabolic viability was recorded by the MTT assay and mixture toxicity expectations were calculated using the independent action (IA) and concentration addition (CA) models. EtOH (EC50 305.26 mM) proved to act additively with COC (EC50 2.60 mM) to significantly increase the drug in vitro cardiotoxicity, even when both substances were combined at individually non-cytotoxic concentrations. Experimental mixture testing (EC50 19.18 ± 3.36 mM) demonstrated that the cardiotoxicity was fairly similar to that predicted by IA (EC50 22.95 mM) and CA (EC50 21.75 mM), supporting additivity. Concentration-dependent increases of intracellular ROS/RNS and GSSG, depletion of GSH and ATP, along with mitochondrial hyperpolarization and activation of intrinsic, extrinsic, and common apoptosis pathways were observed both for single and combined exposures. In general, the mixture exhibited a toxicological profile that mechanistically did not deviate from the single drugs, suggesting that interventions such as antioxidant administration might aid in the clinical treatment of this type of polydrug intoxication. In a clinical perspective, the observed additive mixture effect may reflect the increased hazards at which users of this combination are exposed to in recreational settings.
Assuntos
Apoptose/efeitos dos fármacos , Cocaína/toxicidade , Metabolismo Energético/efeitos dos fármacos , Etanol/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cardiotoxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
N-Benzylpiperazine (BZP) and 1-(3-trifluoromethylphenyl)piperazine (TFMPP) are two synthetic phenylpiperazine analogues that have been frequently commercialized in combination as an alternative to ecstasy ('Legal X'). Despite reports of several clinical complications following the use of these drugs in association, few studies have been conducted so far to elucidate their combined toxicity. The present study was aimed at clarifying the cytotoxic effects of mixtures of BZP and TFMPP in vitro. Human-derived HepaRG cells and primary rat hepatocytes were exposed to the drugs, individually or combined at different mixture ratios, and cytotoxicity was assessed by the MTT assay. Mixture additivity expectations were calculated by the independent action and the concentration addition (CA) models and compared with the experimental outcomes. To delineate the mechanisms underlying the elicited effects, a range of stress endpoints was evaluated, including oxidative stress, energetic imbalance, and metabolic interactions. It was observed that primary rat hepatocytes are more sensitive than HepaRG cells to the toxicity of BZP (EC50 2.20 and 6.60 mM, respectively) and TFMPP (EC50 0.14 and 0.45 mM, respectively). For all BZP-TFMPP combinations tested, CA was the most appropriate model to predict the mixture effects. TFMPP proved to act additively with BZP to produce significant hepatotoxicity (p < 0.01). Remarkably, substantial mixture effects were observed even when each drug was present at concentrations that were harmless individually. In primary hepatocytes, a small deviation from additivity (antagonism) was observed toward the upper range of the concentration-response curve. GC/MS data suggest that a metabolic interaction may be at a play, as the mixture favors the metabolism of both substances, to a significant extent in the case of BZP (p < 0.05). Also, our results demonstrate the influence of oxidative stress and energetic imbalance on these effects (increase in RNS and ROS production, decrease in intracellular GSH/GSSG, ATP depletion and mitochondrial Δψm disruption). The present work clearly demonstrates that potentially harmful interactions among BZP and TFMPP are expected when these drugs are taken concomitantly.
Assuntos
Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Piperazinas/administração & dosagem , Ratos Wistar , Especificidade da EspécieRESUMO
The world's status quo on recreational drugs has dramatically changed in recent years due to the rapid emergence of new psychoactive substances (NPS), represented by new narcotic or psychotropic drugs, in pure form or in preparation, which are not controlled by international conventions, but that may pose a public health threat comparable with that posed by substances listed in these conventions. These NPS, also known as 'legal highs' or 'smart drugs', are typically sold via Internet or 'smartshops' as legal alternatives to controlled substances, being announced as 'bath salts' and 'plant feeders' and is often sought after for consumption especially among young people. Although NPS have the biased reputation of being safe, the vast majority has hitherto not been tested and several fatal cases have been reported, namely for synthetic cathinones, with pathological patterns comparable with amphetamines. Additionally, the unprecedented speed of appearance and distribution of the NPS worldwide brings technical difficulties in the development of analytical procedures and risk assessment in real time. In this study, 27 products commercialized as 'plant feeders' were chemically characterized by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. It was also evaluated, for the first time, the in vitro hepatotoxic effects of individual synthetic cathinones, namely methylone, pentedrone, 4-methylethcathinone (4-MEC) and 3,4-methylenedioxypyrovalerone (MDPV). Two commercial mixtures ('Bloom' and 'Blow') containing mainly cathinone derivatives were also tested, and 3,4-methylenedioxymethamphetamine (MDMA) was used as the reference drug. The study allowed the identification of 19 compounds, showing that synthetic cathinones are the main active compounds present in these products. Qualitative and quantitative variability was found in products sold with the same trade name in matching or different 'smartshops'. In the toxicity studies performed in primary cultured rat hepatocytes, pentedrone and MDPV proved to be the most potent individual agents, with EC50 values of 0.664 and 0.742 mM, respectively, followed by MDMA (EC50 = 0.754 mM). 4-MEC and methylone were the least potent substances, with EC50 values significantly higher (1.29 and 1.18 mM, respectively; p < 0.05 vs. MDMA). 'Bloom' and 'Blow' showed hepatotoxic effects similar to MDMA (EC50 = 0.788 and 0.870 mM, respectively), with cathinones present in these mixtures contributing additively to the overall toxicological effect. Our results show a miscellany of psychoactive compounds present in 'legal high' products with evident hepatotoxic effects. These data contribute to increase the awareness on the real composition of 'legal high' packages and unveil the health risks posed by NPS.
Assuntos
Alcaloides/toxicidade , Drogas Ilícitas/toxicidade , Psicotrópicos/toxicidade , Alcaloides/análise , Animais , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Hepatócitos/efeitos dos fármacos , Drogas Ilícitas/química , Espectroscopia de Ressonância Magnética , Masculino , Psicotrópicos/química , Ratos , Ratos WistarRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The use of "Mexican calea" (Calea zacatechichi Schltdl.) in ritualistic ceremonies, due to its dream-inducing effects, was until recently limited to indigenous communities in Mexico. However, the plant has recently gained popularity in Western societies being commonly used in recreational settings. Despite the traditional and recreational uses, mechanisms underlying its reported oneirogenic effects remain unknown, with no data available on its neurotoxic profile. AIM OF THE STUDY: The scarcity of toxicological data and the unknown role of major neurotransmitter systems in the dream-inducing properties of the plant prompted us to investigate which neurotransmitters might be affected upon its consumption, as well as the potential cytotoxic effects on neurons and microglial cells. Furthermore, we aimed to explore a relationship between the recorded effects and specific constituents. MATERIALS AND METHODS: Effects on cholinergic and monoaminergic pathways were investigated using enzymatic assays, with the latter also being conducted in neuronal SH-SY5Y cells along with the impact on glutamate-induced excitotoxicity. Investigation of the neurotoxic profile was approached in neuronal SH-SY5Y and microglial BV-2 cells, evaluating effects on metabolic performance and membrane integrity using MTT and LDH leakage assays, respectively. Potential interference with oxidative stress was monitored by assessing free radical's levels, as well as 5-lipoxygenase mediated lipid peroxidation. Phenolic constituents were identified through HPLC-DAD-ESI(Ion Trap)MSn analysis. RESULTS: Based on the significant inhibition upon acetylcholinesterase (p < 0.05) and tyrosinase (IC50 = 60.87 ± 7.3 µg/mL; p < 0.05), the aqueous extract obtained from the aerial parts of C. zacatechichi interferes with the cholinergic and dopaminergic systems, but has no impact against monoamine oxidase A. Additionally, a notable cytotoxic effect was observed in SH-SY5Y and BV-2 cells at concentrations as low as 125 and 500 µg/mL (p < 0.05), respectively, LDH leakage suggesting apoptosis may occur at these concentrations, with necroptosis observed at higher ones. Despite the neurocytotoxic profile, these effects appear to be independent of radical stress, as the C. zacatechichi extract scavenged nitric oxide and superoxide radicals at concentrations as low as 62.5 µg/mL, significantly inhibiting also 5-lipoxygenase (IC50 = 72.60 ± 7.3 µg/mL; p < 0.05). Qualitative and quantitative analysis using HPLC-DAD-ESI(Ion Trap)MSn enabled the identification of 28 constituents, with 24 of them being previously unreported in this species. These include a series of dicaffeoylquinic, caffeoylpentoside, and feruloylquinic acids, along with 8 flavonols not previously known to occur in the species, mainly 3-O-monoglycosylated derivatives of quercetin, kaempferol, and isorhamnetin. CONCLUSIONS: Our findings regarding the neuroglial toxicity elicited by C. zacatechichi emphasize the necessity for a thorough elucidation of the plant's toxicity profile. Additionally, evidence is provided that the aerial parts of the plant inhibit both acetylcholinesterase and tyrosinase, potentially linking its psychopharmacological effects to the cholinergic and dopaminergic systems, with an apparent contribution from specific phenolic constituents previously unknown to occur in the species. Collectively, our results lay the groundwork for a regulatory framework on the consumption of C. zacatechichi in recreational settings and contribute to elucidating previous contradictory findings regarding the mechanisms underlying the dream-inducing effects of the plant.
RESUMO
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
RESUMO
The recreational and illicit use of amphetaminic designer compounds, specially 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy), is of concern worldwide. Such psychostimulating drugs are frequently present as complex mixtures in 'rave' pills, making concomitant polysubstance use a common trend. However, the understanding of possible combination effects with these substances is still scarce. The present study was aimed at predicting the cytotoxic effects of mixtures of four amphetaminic derivatives: MDMA, methamphetamine, 4-methylthioamphetamine and d-amphetamine in a human hepatoma cell line. Concentration-response curves for all single-mixture components were recorded by the MTT assay. Data obtained for individual agents were then used to compute the additivity expectations for mixtures of definite composition, using the pharmacological models of concentration addition (CA) and independent action. By comparing the predicted calculations with the experimentally observed effects, we concluded that CA accurately predicts the combination of amphetamines, which act together to generate additive effects over a large range of concentrations. Notably, we observed substantial mixture effects even when each drug was present at low concentrations, which individually produced unnoticeable effects. Nonetheless, for all tested mixtures, a small deviation from additivity was observed towards higher concentrations, particularly at high effect levels. A possible metabolic interaction, which could explain such deviation, was investigated, and it was observed that at higher mixture concentrations increased MDMA metabolism could be contributing to divergences from additivity. In conclusion, the present work clearly demonstrates that potentially harmful interactions among amphetaminic drugs are expected when these drugs are taken concomitantly.
Assuntos
Anfetaminas/farmacologia , Dextroanfetamina/farmacologia , Interações Medicamentosas , Drogas Ilícitas/farmacologia , Metanfetamina/farmacologia , Modelos Teóricos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Análise de RegressãoRESUMO
The liver is a vulnerable target for amphetamine toxicity, but the mechanisms involved in the drug's hepatotoxicity remain poorly understood. The purpose of the current research was to characterize the mode of death elicited by four amphetamines and to evaluate whether their combination triggered similar mechanisms in immortalized human HepG2 cells. The obtained data revealed a time- and temperature-dependent mortality of HepG2 cells exposed to 3,4-methylenedioxymethamphetamine (MDMA, ecstasy; 1.3 mM), methamphetamine (3 mM), 4-methylthioamphetamine (0.5 mM) and D-amphetamine (1.7 mM), alone or combined (1.6 mM mixture). At physiological temperature (37 °C), 24-h exposures caused HepG2 death preferentially by apoptosis, while a rise to 40.5 °C favoured necrosis. ATP levels remained unaltered when the drugs where tested at normothermia, but incubation at 40.5 °C provoked marked ATP depletion for all treatments. Further investigations on the apoptotic mechanisms triggered by the drugs (alone or combined) showed a decline in BCL-2 and BCL- XL mRNA levels, with concurrent upregulation of BAX, BIM, PUMA and BID genes. Elevation of Bax, cleaved Bid, Puma, Bak and Bim protein levels was also seen. To the best of our knowledge, Puma, Bim and Bak have never been linked with the toxicity induced by amphetamines. Time-dependent caspase-3/-7 activation, but not mitochondrial membrane potential (∆ψm) disruption, also mediated amphetamine-induced apoptosis. The cell dismantling was confirmed by poly(ADP-ribose)polymerase proteolysis. Overall, for all evaluated parameters, no relevant differences were detected between individual amphetamines and the mixture (all tested at equieffective cytotoxic concentrations), suggesting that the mode of action of the amphetamines in combination does not deviate from the mode of action of the drugs individually, when eliciting HepG2 cell death.
Assuntos
Anfetaminas/toxicidade , Morte Celular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Citometria de Fluxo , Humanos , Membranas/efeitos dos fármacos , Membranas/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Necrose , Vermelho Neutro , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa/efeitos dos fármacos , Sais de Tetrazólio , TiazóisRESUMO
Cocaine is one of the most consumed stimulants throughout the world, as official sources report. It is a naturally occurring sympathomimetic tropane alkaloid derived from the leaves of Erythroxylon coca, which has been used by South American locals for millennia. Cocaine can usually be found in two forms, cocaine hydrochloride, a white powder, or 'crack' cocaine, the free base. While the first is commonly administered by insufflation ('snorting') or intravenously, the second is adapted for inhalation (smoking). Cocaine can exert local anaesthetic action by inhibiting voltage-gated sodium channels, thus halting electrical impulse propagation; cocaine also impacts neurotransmission by hindering monoamine reuptake, particularly dopamine, from the synaptic cleft. The excess of available dopamine for postsynaptic activation mediates the pleasurable effects reported by users and contributes to the addictive potential and toxic effects of the drug. Cocaine is metabolised (mostly hepatically) into two main metabolites, ecgonine methyl ester and benzoylecgonine. Other metabolites include, for example, norcocaine and cocaethylene, both displaying pharmacological action, and the last one constituting a biomarker for co-consumption of cocaine with alcohol. This review provides a brief overview of cocaine's prevalence and patterns of use, its physical-chemical properties and methods for analysis, pharmacokinetics, pharmacodynamics, and multi-level toxicity.
Assuntos
Cocaína , Dopamina , Cocaína/análise , Cocaína/metabolismo , Cocaína/toxicidade , EtanolRESUMO
The transgenic soy monoculture demands supplementation with pesticides. The aim of this study was to evaluate the individual and mixture effects of fipronil, glyphosate and imidacloprid in human HepG2 cells. Cytotoxicity was evaluated after 48-h incubations through MTT reduction and neutral red uptake assays. Free radicals production, mitochondrial membrane potential, DNA damage, and release of liver enzymes were also evaluated. Data obtained for individual agents were used to compute the additivity expectations for two mixtures of definite composition (one equipotent mixture, based in the EC50 values achieved in the MTT assay; the other one based in the acceptable daily intake of each pesticide), using the models of concentration addition and independent action. The EC50 values for fipronil, glyphosate and imidacloprid were 37.59, 41.13, and 663.66 mg/L, respectively. The mixtures of pesticides elicited significant synergistic effects (p < 0.05), which were greater than the expected by both addictive predictions. Decreased in mitochondrial membrane potential and increased in the transaminases enzymatic activities were observed. As they occur simultaneously, interactions between pesticides, even at non-effective single levels, can reverberate in significant deleterious effects, justifying the need for a more realistic approach in safety evaluations to better predict the effects to human health.
Assuntos
Praguicidas , Glicina/análogos & derivados , Células Hep G2 , Humanos , Neonicotinoides , Nitrocompostos , Praguicidas/toxicidade , Pirazóis , Glycine max , GlifosatoRESUMO
BACKGROUND: Injury remains a major concern to public health in the European region. Previous iterations of the Global Burden of Disease (GBD) study showed wide variation in injury death and disability adjusted life year (DALY) rates across Europe, indicating injury inequality gaps between sub-regions and countries. The objectives of this study were to: 1) compare GBD 2019 estimates on injury mortality and DALYs across European sub-regions and countries by cause-of-injury category and sex; 2) examine changes in injury DALY rates over a 20 year-period by cause-of-injury category, sub-region and country; and 3) assess inequalities in injury mortality and DALY rates across the countries. METHODS: We performed a secondary database descriptive study using the GBD 2019 results on injuries in 44 European countries from 2000 to 2019. Inequality in DALY rates between these countries was assessed by calculating the DALY rate ratio between the highest-ranking country and lowest-ranking country in each year. RESULTS: In 2019, in Eastern Europe 80 [95% uncertainty interval (UI): 71 to 89] people per 100,000 died from injuries; twice as high compared to Central Europe (38 injury deaths per 100,000; 95% UI 34 to 42) and three times as high compared to Western Europe (27 injury deaths per 100,000; 95%UI 25 to 28). The injury DALY rates showed less pronounced differences between Eastern (5129 DALYs per 100,000; 95% UI: 4547 to 5864), Central (2940 DALYs per 100,000; 95% UI: 2452 to 3546) and Western Europe (1782 DALYs per 100,000; 95% UI: 1523 to 2115). Injury DALY rate was lowest in Italy (1489 DALYs per 100,000) and highest in Ukraine (5553 DALYs per 100,000). The difference in injury DALY rates by country was larger for males compared to females. The DALY rate ratio was highest in 2005, with DALY rate in the lowest-ranking country (Russian Federation) 6.0 times higher compared to the highest-ranking country (Malta). After 2005, the DALY rate ratio between the lowest- and the highest-ranking country gradually decreased to 3.7 in 2019. CONCLUSIONS: Injury mortality and DALY rates were highest in Eastern Europe and lowest in Western Europe, although differences in injury DALY rates declined rapidly, particularly in the past decade. The injury DALY rate ratio of highest- and lowest-ranking country declined from 2005 onwards, indicating declining inequalities in injuries between European countries.
RESUMO
Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.
Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/biossíntese , Fungos/metabolismo , Animais , HumanosRESUMO
Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the k-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.