RESUMO
BACKGROUND: The Mediterranean diet is a healthy diet with positive scientific evidence of preventing chronic diseases. Bioactive components support the healthy properties of the Mediterranean diet. Antioxidants and fiber, two components of the Mediterranean diet, are key functional nutrients for healthy eating and nutrition. Wine grape pomace is a rich source of these dietary constituents and may be beneficial for human health. Our hypothesis was that the intake of red wine grape pomace flour (WGPF) prepared from red wine grapes (Cabernet Sauvignon variety) reduced the metabolic syndrome in humans. To evaluate the effect of WGPF on components of metabolic syndrome we design a 16-week longitudinal intervention study. Thirty-eight males, 30-65 years of age, with at least one component of metabolic syndrome, were randomly assigned to either the intervention group (n = 25) or the control group (n = 13). At lunch, the intervention group was given 20 g of WGPF per day, which contained 10 g of dietary fiber, 822 mg of polyphenols and an antioxidant capacity of 7258 ORAC units. Both groups were asked to maintain their regular eating habits and lifestyles. Clinical evaluation, anthropometric measurements and biochemical blood analyses were done at the beginning and the end of the study. RESULTS: WGPF intake significantly decreased systolic and diastolic blood pressure as well as fasting glucose levels. Plasma γ-tocopherol and δ-tocopherol increased and carbonyl group in plasma protein decreased in WGPT group, significantly. No significant effect was observed for waist circumference, HDL cholesterol, triglycerides, total antioxidant capacity and vitamin C in and between groups. The group-dependent magnitude of the differences between the baseline and final postprandial insulin values and γ-tocopherol concentrations was statistically significant. CONCLUSIONS: The consumption of WGPF-rich in fiber and polyphenol antioxidants, as a food supplement in a regular diet improves blood pressure, glycaemia and postprandial insulin. In addition, increased antioxidant defenses and decreased oxidative protein damage indicating attenuation of oxidative stress. WGPF might be a useful food ingredient for health promotion and chronic disease prevention.
Assuntos
Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Fibras na Dieta , Síndrome Metabólica/prevenção & controle , Vinho , Adulto , Idoso , Estudos de Casos e Controles , Dieta Mediterrânea , Ingestão de Energia , Jejum , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacosRESUMO
A healthy dietary pattern and high quality nutrient intake reduce atherosclerotic cardiovascular disease risk. Red wine grape pomace (RWGP)-a rich natural source of dietary fiber and antioxidants-appears to be a potential functional food ingredient. The impact of a dietary supplementation with RWGP flour was evaluated in atherogenic diet-fed SR-B1 KO/ApoER61h/h mice, a model of lethal ischemic heart disease. SR-B1 KO/ApoER61h/h mice were fed with atherogenic (high fat, cholesterol, and cholic acid, HFC) diet supplemented with: (a) 20% chow (HFC-Control), (b) 20% RWGP flour (HFC-RWGP), or (c) 10% chow/10% oat fiber (HFC-Fiber); and survival time was evaluated. In addition, SR-B1 KO/ApoER61h/h mice were fed for 7 or 14 days with HFC-Control or HFC-RWGP diets and plasma lipid levels, inflammation, oxidative damage, and antioxidant activity were measured. Atherosclerosis and myocardial damage were assessed by histology and magnetic resonance imaging, respectively. Supplementation with RWGP reduced premature death, changed TNF-α and IL-10 levels, and increased plasma antioxidant activity. Moreover, decreased atheromatous aortic and brachiocephalic plaque sizes and attenuated myocardial infarction and dysfunction were also observed. These results suggest that RWGP flour intake may be used as a non-pharmacological therapeutic approach, contributing to decreased progression of atherosclerosis, reduced coronary heart disease, and improved cardiovascular outcomes.
Assuntos
Antioxidantes/administração & dosagem , Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Suplementos Nutricionais , Frutas/química , Isquemia Miocárdica/prevenção & controle , Miocárdio/metabolismo , Estresse Oxidativo , Extratos Vegetais/administração & dosagem , Vitis/química , Ração Animal , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Dieta Aterogênica , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/sangue , Interleucina-10/sangue , Lipídeos/sangue , Masculino , Camundongos Knockout para ApoE , Isquemia Miocárdica/sangue , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocárdio/patologia , Extratos Vegetais/sangue , Extratos Vegetais/isolamento & purificação , Placa Aterosclerótica , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética , Fator de Necrose Tumoral alfa/sangueRESUMO
Wine grape pomace flour (WGPF) is a fruit byproduct that is high in fiber and antioxidants. We tested whether WGPF consumption could affect blood biochemical parameters, including oxidative stress biomarkers. In a three-month intervention study, 27 male volunteers, each with some components of metabolic syndrome, consumed a beef burger supplemented with 7% WGPF containing 3.5% of fiber and 1.2 mg gallic equivalents (GE)/g of polyphenols (WGPF-burger), daily, during the first month. The volunteers consumed no burgers in the second month, and one control-burger daily in the third month. At baseline and after these periods, we evaluated the metabolic syndrome components, plasma antioxidant status (i.e., 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), vitamin E, vitamin C), and oxidative damage markers (i.e., advanced oxidation protein products (AOPPs), oxidized low-density lipoproteins (oxLDLs), malondialdehyde (MDA)). The WGPF-burger intake significantly reduced glycemia and homeostatic model assessment-based measurement of insulin resistance. Vitamin C increased and decreased during the consumption of the WGPF-burger and control-burger, respectively. The WGPF-burger intake significantly decreased AOPP and oxLDL levels. Vitamin E and MDA levels showed no significant changes. In conclusion, the consumption of beef burgers prepared with WGPF improved fasting glucose and insulin resistance, plasma antioxidant levels, and oxidative damage markers. Therefore, this functional ingredient has potential as a dietary supplement to manage chronic disease risk in humans.
Assuntos
Fibras na Dieta/administração & dosagem , Ingestão de Alimentos/fisiologia , Farinha , Síndrome Metabólica/sangue , Carne Vermelha , Vitis/química , Adulto , Produtos da Oxidação Avançada de Proteínas/sangue , Antioxidantes/metabolismo , Ácido Ascórbico/sangue , Glicemia/metabolismo , Suplementos Nutricionais , Jejum/sangue , Humanos , Resistência à Insulina/fisiologia , Lipoproteínas LDL/sangue , Estudos Longitudinais , Masculino , Malondialdeído/sangue , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Período Pós-Prandial , Vitamina E/sangueRESUMO
BACKGROUND: The Mediterranean diet is a healthy diet with positive scientific evidence of preventing chronic diseases. Bioactive components support the healthy properties of the Mediterranean diet. Antioxidants and fiber, two components of the Mediterranean diet, are key functional nutrients for healthy eating and nutrition. Wine grape pomace is a rich source of these dietary constituents and may be beneficial for human health. Our hypothesis was that the intake of red wine grape pomace flour (WGPF) prepared from red wine grapes (Cabernet Sauvignon variety) reduced the metabolic syndrome in humans. To evaluate the effect of WGPF on components of metabolic syndrome we design a 16-week longitudinal intervention study. Thirty-eight males, 30-65 years of age, with at least one component of metabolic syndrome, were randomly assigned to either the intervention group (n = 25) or the control group (n = 13). At lunch, the intervention group was given 20 g of WGPF per day, which contained 10 g of dietary fiber, 822 mg of polyphenols and an antioxidant capacity of 7258 ORAC units. Both groups were asked to maintain their regular eating habits and lifestyles. Clinical evaluation, anthropometric measurements and biochemical blood analyses were done at the beginning and the end of the study. RESULTS: WGPF intake significantly decreased systolic and diastolic blood pressure as well as fasting glucose levels. Plasma γ-tocopherol and δ-tocopherol increased and carbonyl group in plasma protein decreased in WGPT group, significantly. No significant effect was observed for waist circumference, HDL cholesterol, triglycerides, total antioxidant capacity and vitamin C in and between groups. The group-dependent magnitude of the differences between the baseline and final postprandial insulin values and γ-tocopherol concentrations was statistically significant. CONCLUSIONS: The consumption of WGPF-rich in fiber and polyphenol antioxidants, as a food supplement in a regular diet improves blood pressure, glycaemia and postprandial insulin. In addition, increased antioxidant defenses and decreased oxidative protein damage indicating attenuation of oxidative stress. WGPF might be a useful food ingredient for health promotion and chronic disease prevention.