Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39043180

RESUMO

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Assuntos
Lesões Encefálicas , Imunidade Inata , Memória Imunológica , Inflamação , Interleucina-1beta , Camundongos Endogâmicos C57BL , Monócitos , Animais , Camundongos , Interleucina-1beta/metabolismo , Lesões Encefálicas/imunologia , Humanos , Masculino , Monócitos/metabolismo , Monócitos/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/imunologia , Cardiopatias/imunologia , Feminino , Receptores CCR2/metabolismo , Fibrose , Epigênese Genética , Imunidade Treinada
2.
Immunity ; 57(9): 2173-2190.e8, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39053462

RESUMO

The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.


Assuntos
Envelhecimento , Sistema Nervoso Central , Imunidade Inata , Camundongos Endogâmicos C57BL , Microglia , Células Mieloides , Remielinização , Animais , Camundongos , Envelhecimento/imunologia , Microglia/imunologia , Microglia/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Sistema Nervoso Central/imunologia , Bainha de Mielina/metabolismo , Bainha de Mielina/imunologia , Epigênese Genética , Doenças Desmielinizantes/imunologia , Modelos Animais de Doenças
3.
Immunity ; 54(4): 648-659.e8, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667383

RESUMO

Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.


Assuntos
Coinfecção/imunologia , Proteínas de Ligação a DNA/imunologia , Tolerância Imunológica/imunologia , Inflamassomos/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/imunologia , Infecções Bacterianas/imunologia , Queimaduras/imunologia , Queimaduras/microbiologia , Coinfecção/microbiologia , Humanos , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/microbiologia , Linfócitos T/imunologia
4.
Nature ; 633(8029): 433-441, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112714

RESUMO

The risk of early recurrent events after stroke remains high despite currently established secondary prevention strategies1. Risk is particularly high in patients with atherosclerosis, with more than 10% of patients experiencing early recurrent events1,2. However, despite the enormous medical burden of this clinical phenomenon, the underlying mechanisms leading to increased vascular risk and recurrent stroke are largely unknown. Here, using a novel mouse model of stroke-induced recurrent ischaemia, we show that stroke leads to activation of the AIM2 inflammasome in vulnerable atherosclerotic plaques via an increase of circulating cell-free DNA. Enhanced plaque inflammation post-stroke results in plaque destabilization and atherothrombosis, finally leading to arterioarterial embolism and recurrent stroke within days after the index stroke. We confirm key steps of plaque destabilization also after experimental myocardial infarction and in carotid artery plaque samples from patients with acute stroke. Rapid neutrophil NETosis was identified as the main source of cell-free DNA after stroke and NET-DNA as the causative agent leading to AIM2 inflammasome activation. Neutralization of cell-free DNA by DNase treatment or inhibition of inflammasome activation reduced the rate of stroke recurrence after experimental stroke. Our findings present an explanation for the high recurrence rate after incident ischaemic events in patients with atherosclerosis. The detailed mechanisms uncovered here provide clinically uncharted therapeutic targets for which we show high efficacy to prevent recurrent events. Targeting DNA-mediated inflammasome activation after remote tissue injury represents a promising avenue for further clinical development in the prevention of early recurrent events.


Assuntos
Aterosclerose , Ácidos Nucleicos Livres , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Inflamassomos , Placa Aterosclerótica , Recidiva , Acidente Vascular Cerebral , Animais , Inflamassomos/metabolismo , Camundongos , Masculino , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/imunologia , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/complicações , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/metabolismo , Ácidos Nucleicos Livres/genética , Feminino , Armadilhas Extracelulares/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL
5.
Nature ; 605(7908): 152-159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477759

RESUMO

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controle
6.
Proc Natl Acad Sci U S A ; 120(36): e2302720120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643212

RESUMO

Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aß42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.


Assuntos
Doença de Alzheimer , Cadeias HLA-DRB1 , Doença de Parkinson , Humanos , Doença de Alzheimer/genética , Antígenos de Histocompatibilidade , Antígenos HLA , Cadeias HLA-DRB1/genética , Doença de Parkinson/genética
7.
Circulation ; 149(9): 669-683, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38152968

RESUMO

BACKGROUND: Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS: Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.


Assuntos
Aterosclerose , Quimiocina CXCL10 , Interleucina-6 , Proteogenômica , Humanos , Aterosclerose/genética , Quimiocina CXCL10/metabolismo , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Interleucina-6/metabolismo , Análise da Randomização Mendeliana , Doença Arterial Periférica , Proteômica , Acidente Vascular Cerebral/genética
8.
Ann Neurol ; 93(4): 819-829, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36571564

RESUMO

OBJECTIVE: Polygenic variation accounts for a substantial portion of the risk of Alzheimer's disease (AD), but its effect on the rate of fibrillar-tau accumulation as a key driver of dementia symptoms is unclear. METHODS: We combined the to-date largest number of genetic risk variants of AD (n = 85 lead single-nucleotide polymorphisms [SNPs]) from recent genome-wide association studies (GWAS) to generate a polygenic score (PGS). We assessed longitudinal tau-positron emission tomography (PET), amyloid-PET, and cognition in 231 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using the PGS, together with global amyloid-PET, we predicted the rate of tau-PET increases in Braak-stage regions-of-interest and cognitive decline. We also assessed PGS-risk enrichment effects on the required sample size in clinical trials targeting tau pathology. RESULTS: We found that a higher PGS was associated with higher rates of tau-PET accumulation, in particular at elevated amyloid-PET levels. The tau-PET increases mediated the association between PGS and faster cognitive decline. Risk enrichment through high PGS afforded sample size savings by 34%. INTERPRETATION: Our results demonstrate that the PGS predicts faster tau progression and thus cognitive decline, showing utility to enhance statistical power in clinical trials. ANN NEUROL 2023;93:819-829.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Estudo de Associação Genômica Ampla , Encéfalo/patologia , Biomarcadores , Disfunção Cognitiva/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Amiloide , Peptídeos beta-Amiloides/genética
9.
Ann Neurol ; 93(1): 29-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222455

RESUMO

OBJECTIVE: Cerebral small vessel diseases (cSVDs) are a major cause of stroke and dementia. We used cutting-edge 7T-MRI techniques in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), to establish which aspects of cerebral small vessel function are affected by this monogenic form of cSVD. METHODS: We recruited 23 CADASIL patients (age 51.1 ± 10.1 years, 52% women) and 13 age- and sex-matched controls (46.1 ± 12.6, 46% women). Small vessel function measures included: basal ganglia and centrum semiovale perforating artery blood flow velocity and pulsatility, vascular reactivity to a visual stimulus in the occipital cortex and reactivity to hypercapnia in the cortex, subcortical gray matter, white matter, and white matter hyperintensities. RESULTS: Compared with controls, CADASIL patients showed lower blood flow velocity and higher pulsatility index within perforating arteries of the centrum semiovale (mean difference - 0.09 cm/s, p = 0.03 and 0.20, p = 0.009) and basal ganglia (mean difference - 0.98 cm/s, p = 0.003 and 0.17, p = 0.06). Small vessel reactivity to a short visual stimulus was decreased (blood-oxygen-level dependent [BOLD] mean difference -0.21%, p = 0.04) in patients, while reactivity to hypercapnia was preserved in the cortex, subcortical gray matter, and normal appearing white matter. Among patients, reactivity to hypercapnia was decreased in white matter hyperintensities compared to normal appearing white matter (BOLD mean difference -0.29%, p = 0.02). INTERPRETATION: Multiple aspects of cerebral small vessel function on 7T-MRI were abnormal in CADASIL patients, indicative of increased arteriolar stiffness and regional abnormalities in reactivity, locally also in relation to white matter injury. These observations provide novel markers of cSVD for mechanistic and intervention studies. ANN NEUROL 2023;93:29-39.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , CADASIL/diagnóstico por imagem , Hipercapnia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Infarto Cerebral , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem
10.
Brain Behav Immun ; 117: 399-411, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309639

RESUMO

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Autoimunidade , Encefalite , Doença de Hashimoto , Animais , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos Retrospectivos , Autoanticorpos , Convulsões , Mamíferos , Canal de Potássio Kv1.2
11.
Circ Res ; 130(8): 1252-1271, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420911

RESUMO

Poststroke cognitive impairment and dementia (PSCID) is a major source of morbidity and mortality after stroke worldwide. PSCID occurs as a consequence of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. Cognitive impairment and dementia manifesting after a clinical stroke is categorized as vascular even in people with comorbid neurodegenerative pathology, which is common in elderly individuals and can contribute to the clinical expression of PSCID. Manifestations of cerebral small vessel disease, such as covert brain infarcts, white matter lesions, microbleeds, and cortical microinfarcts, are also common in patients with stroke and likewise contribute to cognitive outcomes. Although studies of PSCID historically varied in the approach to timing and methods of diagnosis, most of them demonstrate that older age, lower educational status, socioeconomic disparities, premorbid cognitive or functional decline, life-course exposure to vascular risk factors, and a history of prior stroke increase risk of PSCID. Stroke characteristics, in particular stroke severity, lesion volume, lesion location, multiplicity and recurrence, also influence PSCID risk. Understanding the complex interaction between an acute stroke event and preexisting brain pathology remains a priority and will be critical for developing strategies for personalized prediction, prevention, targeted interventions, and rehabilitation. Current challenges in the field relate to a lack of harmonization of definition and classification of PSCID, timing of diagnosis, approaches to neurocognitive assessment, and duration of follow-up after stroke. However, evolving knowledge on pathophysiology, neuroimaging, and biomarkers offers potential for clinical applications and may inform clinical trials. Preventing stroke and PSCID remains a cornerstone of any strategy to achieve optimal brain health. We summarize recent developments in the field and discuss future directions closing with a call for action to systematically include cognitive outcome assessment into any clinical studies of poststroke outcome.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Demência Vascular , Demência , Acidente Vascular Cerebral , Idoso , Hemorragia Cerebral , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Demência/diagnóstico , Demência/epidemiologia , Demência/etiologia , Demência Vascular/diagnóstico , Demência Vascular/epidemiologia , Demência Vascular/etiologia , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/terapia
12.
Brain ; 146(2): 678-689, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35859352

RESUMO

Alzheimer's disease and cerebral small vessel disease are the two leading causes of cognitive decline and dementia and coexist in most memory clinic patients. White matter damage as assessed by diffusion MRI is a key feature in both Alzheimer's and cerebral small vessel disease. However, disease-specific biomarkers of white matter alterations are missing. Recent advances in diffusion MRI operating on the fixel level (fibre population within a voxel) promise to advance our understanding of disease-related white matter alterations. Fixel-based analysis allows derivation of measures of both white matter microstructure, measured by fibre density, and macrostructure, measured by fibre-bundle cross-section. Here, we evaluated the capacity of these state-of-the-art fixel metrics to disentangle the effects of cerebral small vessel disease and Alzheimer's disease on white matter integrity. We included three independent samples (total n = 387) covering genetically defined cerebral small vessel disease and age-matched controls, the full spectrum of biomarker-confirmed Alzheimer's disease including amyloid- and tau-PET negative controls and a validation sample with presumed mixed pathology. In this cross-sectional analysis, we performed group comparisons between patients and controls and assessed associations between fixel metrics within main white matter tracts and imaging hallmarks of cerebral small vessel disease (white matter hyperintensity volume, lacune and cerebral microbleed count) and Alzheimer's disease (amyloid- and tau-PET), age and a measure of neurodegeneration (brain volume). Our results showed that (i) fibre density was reduced in genetically defined cerebral small vessel disease and strongly associated with cerebral small vessel disease imaging hallmarks; (ii) fibre-bundle cross-section was mainly associated with brain volume; and (iii) both fibre density and fibre-bundle cross-section were reduced in the presence of amyloid, but not further exacerbated by abnormal tau deposition. Fixel metrics were only weakly associated with amyloid- and tau-PET. Taken together, our results in three independent samples suggest that fibre density captures the effect of cerebral small vessel disease, while fibre-bundle cross-section is largely determined by neurodegeneration. The ability of fixel-based imaging markers to capture distinct effects on white matter integrity can propel future applications in the context of precision medicine.


Assuntos
Doença de Alzheimer , Doenças de Pequenos Vasos Cerebrais , Doenças Vasculares , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Estudos Transversais , Imagem de Difusão por Ressonância Magnética/métodos , Proteínas Amiloidogênicas , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
13.
Am Heart J ; 265: 66-76, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37422010

RESUMO

BACKGROUND: Atrial fibrillation (AF) is one of the most frequent causes of stroke. Several randomized trials have shown that prolonged monitoring increases the detection of AF, but the effect on reducing recurrent cardioembolism, ie, ischemic stroke and systemic embolism, remains unknown. We aim to evaluate whether a risk-adapted, intensified heart rhythm monitoring with consequent guideline conform treatment, which implies initiation of oral anticoagulation (OAC), leads to a reduction of recurrent cardioembolism. METHODS: Find-AF 2 is a randomized, controlled, open-label parallel multicenter trial with blinded endpoint assessment. 5,200 patients ≥ 60 years of age with symptomatic ischemic stroke within the last 30 days and without known AF will be included at 52 study centers with a specialized stroke unit in Germany. Patients without AF in an additional 24-hour Holter ECG after the qualifying event will be randomized in a 1:1 fashion to either enhanced, prolonged and intensified ECG-monitoring (intervention arm) or standard of care monitoring (control arm). In the intervention arm, patients with a high risk of underlying AF will receive continuous rhythm monitoring using an implantable cardiac monitor (ICM) whereas those without high risk of underlying AF will receive repeated 7-day Holter ECGs. The duration of rhythm monitoring within the control arm is up to the discretion of the participating centers and is allowed for up to 7 days. Patients will be followed for at least 24 months. The primary efficacy endpoint is the time until recurrent ischemic stroke or systemic embolism occur. CONCLUSIONS: The Find-AF 2 trial aims to demonstrate that enhanced, prolonged and intensified rhythm monitoring results in a more effective prevention of recurrent ischemic stroke and systemic embolism compared to usual care.


Assuntos
Fibrilação Atrial , Embolia , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Lactente , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Furilfuramida , Estudos Prospectivos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/diagnóstico , Eletrocardiografia Ambulatorial/métodos , Embolia/diagnóstico , Embolia/etiologia , Embolia/prevenção & controle
14.
Nat Methods ; 17(4): 442-449, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161395

RESUMO

Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.


Assuntos
Encéfalo/irrigação sanguínea , Aprendizado de Máquina , Animais , Imageamento Tridimensional , Camundongos
15.
Ann Neurol ; 91(5): 640-651, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35178771

RESUMO

OBJECTIVE: Ischemic stroke etiology remains undetermined in 30% of cases. We explored the genetic architecture of stroke classified as undetermined to test if mechanisms and risk factors underlying large-artery atherosclerotic (LAAS), cardioembolic (CES), and small-vessel stroke (SVS) contribute to its pathogenesis. METHODS: We analyzed genome-wide data from 16,851 ischemic stroke cases and 32,473 controls. Using polygenic risk scores for LAAS, CES, and SVS, we assessed the genetic overlap with stroke of undetermined source and used pairwise genomewide association study (GWAS-PW) to search for shared loci. We then applied Mendelian randomization (MR) to identify potentially causal risk factors of stroke of undetermined source. RESULTS: Genetic risk for LAS, CES, and SVS was associated with stroke of undetermined source pointing to overlap in their genetic architecture. Pairwise analyses revealed 19 shared loci with LAAS, 2 with CES, and 5 with SVS that have been implicated in atherosclerosis-related phenotypes. Genetic liability to both carotid atherosclerosis and atrial fibrillation was associated with stroke of undetermined source, but the association with atrial fibrillation was attenuated after excluding cases with incomplete diagnostic workup. MR analyses showed effects of genetically determinants of blood pressure, diabetes, waist-to-hip ratio, inflammatory pathways (IL-6 signaling, MCP-1/CCL2 levels), and factor XI levels on stroke of undetermined source. INTERPRETATION: Stroke of undetermined source shares genetic and vascular risk factors with other stroke subtypes, especially LAAS, thus highlighting the diagnostic limitations of current subtyping approaches. The potentially causal associations with carotid atherosclerosis and atherosclerotic risk factors might have implications for prevention strategies targeting these mechanisms. ANN NEUROL 2022;91:640-651.


Assuntos
Fibrilação Atrial , Doenças das Artérias Carótidas , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética
16.
J Neurol Neurosurg Psychiatry ; 94(1): 70-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039629

RESUMO

INTRODUCTION: Experimental stroke studies suggest an influence of the time of day of stroke onset on infarct progression. Whether this holds true after human stroke is unknown, but would have implications for the design of randomised controlled trials, especially those on neuroprotection. METHODS: We pooled data from 583 patients with anterior large-vessel occlusion stroke from three prospectively recruited cohorts. Ischaemic core and penumbra volumes were determined with CT perfusion using automated thresholds. Core growth was calculated as the ratio of core volume and onset-to-imaging time. To determine circadian rhythmicity, we applied multivariable linear and sinusoidal regression analysis adjusting for potential baseline confounders. RESULTS: Patients with symptom onset at night showed larger ischaemic core volumes on admission compared with patients with onset during the day (median, 40.2 mL vs 33.8 mL), also in adjusted analyses (p=0.008). Sinusoidal analysis indicated a peak of core volumes with onset at 11pm. Core growth was faster at night compared with day onset (adjusted p=0.01), especially for shorter onset-to-imaging times. In contrast, penumbra volumes did not change across the 24-hour cycle. DISCUSSION: These results suggest that human infarct progression varies across the 24-hour cycle with potential implications for the design and interpretation of neuroprotection trials.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Infarto , Ritmo Circadiano
17.
Arterioscler Thromb Vasc Biol ; 42(5): e131-e144, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35387476

RESUMO

BACKGROUND: The CCL2 (CC-chemokine ligand 2)/CCR2 (CC-chemokine receptor 2) axis governs monocyte recruitment to atherosclerotic lesions. Genetic and epidemiological studies show strong associations of CCL2 levels with atherosclerotic disease. Still, experimental studies testing pharmacological inhibition of CCL2 or CCR2 in atheroprone mice apply widely different approaches and report variable results, thus halting clinical translation. METHODS: We systematically searched the literature for studies employing pharmacological CCL2/CCR2 blockade in atheroprone mice and meta-analyzed their effects on lesion size and morphology. RESULTS: In a meta-analysis of 14 studies testing 11 different agents, CCL2/CCR2 blockade attenuated atherosclerotic lesion size in the aortic root or arch (g=-0.75 [-1.17 to -0.32], P=6×10-4; N=171/171 mice in experimental/control group), the carotid (g=-2.39 [-4.23 to -0.55], P=0.01; N=24/25), and the femoral artery (g=-2.38 [-3.50 to -1.26], P=3×10-5; N=10/10). Furthermore, CCL2/CCR2 inhibition reduced intralesional macrophage accumulation and increased smooth muscle cell content and collagen deposition. The effects of CCL2/CCR2 inhibition on lesion size correlated with reductions in plaque macrophage accumulation, in accord with a prominent role of CCL2/CCR2 signaling in monocyte recruitment. Subgroup analyses showed comparable efficacy of different CCL2- and CCR2-inhibitors in reducing lesion size and intralesional macrophages. The quality assessment revealed high risk of detection bias due to lack of blinding during outcome assessment, as well as evidence of attrition and reporting bias. CONCLUSIONS: Preclinical evidence suggests that pharmacological targeting of CCL2 or CCR2 might lower atherosclerotic lesion burden, but the majority of existing studies suffer major quality issues that highlight the need for additional high-quality research.


Assuntos
Aterosclerose , Quimiocina CCL2 , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Quimiocina CCL2/genética , Quimiocinas , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Receptores CCR2/genética
18.
Brain ; 145(1): 295-304, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34358307

RESUMO

Age-related loss of white matter microstructural integrity is a major determinant of cognitive decline, dementia and gait disorders. However, the mechanisms and molecular pathways that contribute to this loss of integrity remain elusive. We performed a genome-wide association study of white matter microstructural integrity as quantified by diffusion MRI metrics (mean diffusivity and fractional anisotropy) in up to 31 128 individuals from UK Biobank (age 45-81 years) based on a two degrees of freedom (2df) test of single nucleotide polymorphism (SNP) and SNP × Age effects. We identified 18 loci that were associated at genome-wide significance with either mean diffusivity (n = 16) or fractional anisotropy (n = 6). Among the top loci was a region on chromosome 6 encoding the human major histocompatibility complex (MHC). Variants in the MHC region were strongly associated with both mean diffusivity [best SNP: 6:28866209_TTTTG_T, beta (standard error, SE) = -0.069 (0.009); 2df P = 6.5 × 10-15] and fractional anisotropy [best SNP: rs3129787, beta (SE) = -0.056 (0.008); 2df P = 3.5 × 10-12]. Of the imputed human leukocyte antigen (HLA) alleles and complement component 4 (C4) structural haplotype variants in the human MHC, the strongest association was with the C4-BS variant [for mean diffusivity: beta (SE) = -0.070 (0.010); P = 2.7 × 10-11; for fractional anisotropy: beta (SE) = -0.054 (0.011); P = 1.6 × 10-7]. After conditioning on C4-BS no associations with HLA alleles remained significant. The protective influence of C4-BS was stronger in older participants [age ≥ 65; interaction P = 0.0019 (mean diffusivity), P = 0.015 (fractional anisotropy)] and in participants without a history of smoking [interaction P = 0.00093 (mean diffusivity), P = 0.021 (fractional anisotropy)]. Taken together, our findings demonstrate a role of the complement system and of gene-environment interactions in age-related loss of white matter microstructural integrity.


Assuntos
Complemento C4/metabolismo , Substância Branca , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
19.
Brain ; 145(8): 2677-2686, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35598204

RESUMO

Statins lower low-density lipoprotein cholesterol and are widely used for the prevention of atherosclerotic cardiovascular disease. Whether statin-induced low-density lipoprotein reduction increases risk of intracerebral haemorrhage has been debated for almost two decades. Here, we explored whether genetically predicted on-statin low-density lipoprotein response is associated with intracerebral haemorrhage risk using Mendelian randomization. Using genomic data from randomized trials, we derived a polygenic score from 35 single nucleotide polymorphisms of on-statin low-density lipoprotein response and tested it in the population-based UK Biobank. We extracted statin drug and dose information from primary care data on a subset of 225 195 UK Biobank participants covering a period of 29 years. We validated the effects of the genetic score on longitudinal low-density lipoprotein measurements with generalized mixed models and explored associations with incident intracerebral haemorrhage using Cox regression analysis. Statins were prescribed at least once to 75 973 (31%) of the study participants (mean 57 years, 55% females). Among statin users, mean low-density lipoprotein decreased by 3.45 mg/dl per year [95% confidence interval (CI): (-3.47, -3.42)] over follow-up. A higher genetic score of statin response [1 standard deviation (SD) increment] was associated with significant additional reductions in low-density lipoprotein levels [-0.05 mg/dl per year, (-0.07, -0.02)], showed concordant lipidomic effects on other lipid traits as statin use and was associated with a lower risk for incident myocardial infarction [hazard ratio per SD increment 0.98 95% CI (0.96, 0.99)] and peripheral artery disease [hazard ratio per SD increment 0.93 95% CI (0.87, 0.99)]. Over a 11-year follow-up period, a higher genetically predicted statin response among statin users was associated with higher intracerebral haemorrhage risk in a model adjusting for statin dose [hazard ratio per SD increment 1.16, 95% CI (1.05, 1.28)]. On the contrary, there was no association with intracerebral haemorrhage risk among statin non-users (P = 0.89). These results provide further support for the hypothesis that statin-induced low-density lipoprotein reduction may be causally associated with intracerebral haemorrhage risk. While the net benefit of statins for preventing vascular disease is well-established, these results provide insights about the personalized response to statin intake and the role of pharmacological low-density lipoprotein lowering in the pathogenesis of intracerebral haemorrhage.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Infarto do Miocárdio , Hemorragia Cerebral , LDL-Colesterol , Feminino , Humanos , Masculino , Fatores de Risco
20.
Eur Heart J ; 43(19): 1799-1808, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567558

RESUMO

Decades of research have established atherosclerosis as an inflammatory disease. Only recently though, clinical trials provided proof-of-concept evidence for the efficacy of anti-inflammatory strategies with respect to cardiovascular events, thus offering a new paradigm for lowering residual vascular risk. Efforts to target the inflammasome-interleukin-1ß-interleukin-6 pathway have been highly successful, but inter-individual variations in drug response, a lack of reduction in all-cause mortality, and a higher rate of infections also highlight the need for a second generation of anti-inflammatory agents targeting atherosclerosis-specific immune mechanisms while minimizing systemic side effects. CC-motif chemokine ligand 2/monocyte-chemoattractant protein-1 (CCL2/MCP-1) orchestrates inflammatory monocyte trafficking between the bone marrow, circulation, and atherosclerotic plaques by binding to its cognate receptor CCR2. Adding to a strong body of data from experimental atherosclerosis models, a coherent series of recent large-scale genetic and observational epidemiological studies along with data from human atherosclerotic plaques highlight the relevance and therapeutic potential of the CCL2-CCR2 axis in human atherosclerosis. Here, we summarize experimental and human data pinpointing the CCL2-CCR2 pathway as an emerging drug target in cardiovascular disease. Furthermore, we contextualize previous efforts to interfere with this pathway, scrutinize approaches of ligand targeting vs. receptor targeting, and discuss possible pathway-intrinsic opportunities and challenges related to pharmacological targeting of the CCL2-CCR2 axis in human atherosclerotic disease.


Assuntos
Aterosclerose , Quimiocina CCL2 , Placa Aterosclerótica , Receptores CCR2 , Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Quimiocina CCL2/metabolismo , Humanos , Ligantes , Monócitos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/prevenção & controle , Receptores CCR2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA