RESUMO
Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.
Assuntos
Análise de Dados , Ciência de Dados/métodos , Ciência de Dados/normas , Conjuntos de Dados como Assunto , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Pesquisadores/organização & administração , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conjuntos de Dados como Assunto/estatística & dados numéricos , Feminino , Humanos , Modelos Logísticos , Masculino , Metanálise como Assunto , Modelos Neurológicos , Reprodutibilidade dos Testes , Pesquisadores/normas , SoftwareRESUMO
Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Imageamento por Ressonância Magnética , Neuroimagem , Lobo Parietal , Síndrome , Córtex Cerebral/diagnóstico por imagemRESUMO
BACKGROUND: Spatial patterns of brain functional connectivity can vary substantially at the individual level. Applying cortical surface-based approaches with individualized rather than group templates may accelerate the discovery of biological markers related to psychiatric disorders. We investigated cortico-subcortical networks from multi-cohort data in people with schizophrenia spectrum disorders (SSDs) and healthy controls (HC) using individualized connectivity profiles. METHODS: We utilized resting-state and anatomical MRI data from n = 406 participants (n = 203 SSD, n = 203 HC) from four cohorts. Functional timeseries were extracted from previously defined intrinsic network subregions of the striatum, thalamus, and cerebellum as well as 80 cortical regions of interest, representing six intrinsic networks using (1) volume-based approaches, (2) a surface-based group atlas approaches, and (3) Personalized Intrinsic Network Topography (PINT). RESULTS: The correlations between all cortical networks and the expected subregions of the striatum, cerebellum, and thalamus were increased using a surface-based approach (Cohen's D volume vs. surface 0.27-1.00, all p < 10-6 ) and further increased after PINT (Cohen's D surface vs. PINT 0.18-0.96, all p < 10-4 ). In SSD versus HC comparisons, we observed robust patterns of dysconnectivity that were strengthened using a surface-based approach and PINT (Number of differing pairwise-correlations: volume: 404, surface: 570, PINT: 628, FDR corrected). CONCLUSION: Surface-based and individualized approaches can more sensitively delineate cortical network dysconnectivity differences in people with SSDs. These robust patterns of dysconnectivity were visibly organized in accordance with the cortical hierarchy, as predicted by computational models.
Assuntos
Córtex Cerebral , Neuroimagem Funcional , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Masculino , Feminino , Adulto , Córtex Cerebral/diagnóstico por imagem , Adolescente , Adulto Jovem , Imageamento por Ressonância Magnética , Descanso , Corpo Estriado/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Cerebelo/diagnóstico por imagemRESUMO
Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.
Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Encéfalo , Imageamento por Ressonância Magnética/métodos , ObesidadeRESUMO
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Assuntos
Tonsila do Cerebelo/patologia , Corpo Estriado/patologia , Hipocampo/patologia , Neuroimagem , Esquizofrenia/patologia , Tálamo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Estudos Multicêntricos como Assunto , Esquizofrenia/diagnóstico por imagem , Tálamo/diagnóstico por imagemRESUMO
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
Assuntos
Variação Biológica da População/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética , Neuroimagem , Caracteres Sexuais , Espessura Cortical do Cérebro , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , MasculinoRESUMO
Human neuroimaging during cognitive tasks has provided unique and important insights into the neurobiology of cognition. However, the vast majority of research relies on group aggregate or average statistical maps of activity, which do not fully capture the rich intersubject variability in brain function. In order to fully understand the neurobiology of cognitive processes, it is necessary to explore the range of variability in activation patterns across individuals. To better characterize individual variability, hierarchical clustering was performed separately on six fMRI tasks in 822 participants from the Human Connectome Project. Across all tasks, clusters ranged from a predominantly 'deactivating' pattern towards a more 'activating' pattern of brain activity, with significant differences in out-of-scanner cognitive test scores between clusters. Cluster stability was assessed via a resampling approach; a cluster probability matrix was generated, as the probability of any pair of participants clustering together when both were present in a random subsample. Rather than forming distinct clusters, participants fell along a spectrum or into pseudo-clusters without clear boundaries. A principal components analysis of the cluster probability matrix revealed three components explaining over 90% of the variance in clustering. Plotting participants in this lower-dimensional 'similarity space' revealed manifolds of variations along an S 'snake' shaped spectrum or a folded circle or 'tortilla' shape. The 'snake' shape was present in tasks where individual variability related to activity along covarying networks, while the 'tortilla' shape represented multiple networks which varied independently.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Análise por Conglomerados , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto JovemRESUMO
Several brain disorders exhibit sex differences in onset, presentation, and prevalence. Increased understanding of the neurobiology of sex-based differences in variability across the lifespan can provide insight into both disease vulnerability and resilience. In n = 3069 participants, from 8 to 95 years of age, we found widespread greater variability in males compared with females in cortical surface area and global and subcortical volumes for discrete brain regions. In contrast, variance in cortical thickness was similar for males and females. These findings were supported by multivariate analysis accounting for structural covariance, and present and stable across the lifespan. Additionally, we examined variability among brain regions by sex. We found significant age-by-sex interactions across neuroimaging metrics, whereby in very early life males had reduced among-region variability compared with females, while in very late life this was reversed. Overall, our findings of greater regional variability, but less among-region variability in males in early life may aid our understanding of sex-based risk for neurodevelopmental disorders. In contrast, our findings in late life may provide a potential sex-based risk mechanism for dementia.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Longevidade/fisiologia , Caracteres Sexuais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Adulto JovemRESUMO
BACKGROUND: Positive symptoms are a useful predictor of aggression in schizophrenia. Although a similar pattern of abnormal brain structures related to both positive symptoms and aggression has been reported, this observation has not yet been confirmed in a single sample. METHOD: To study the association between positive symptoms and aggression in schizophrenia on a neurobiological level, a prospective meta-analytic approach was employed to analyze harmonized structural neuroimaging data from 10 research centers worldwide. We analyzed brain MRI scans from 902 individuals with a primary diagnosis of schizophrenia and 952 healthy controls. RESULTS: The result identified a widespread cortical thickness reduction in schizophrenia compared to their controls. Two separate meta-regression analyses revealed that a common pattern of reduced cortical gray matter thickness within the left lateral temporal lobe and right midcingulate cortex was significantly associated with both positive symptoms and aggression. CONCLUSION: These findings suggested that positive symptoms such as formal thought disorder and auditory misperception, combined with cognitive impairments reflecting difficulties in deploying an adaptive control toward perceived threats, could escalate the likelihood of aggression in schizophrenia.
Assuntos
Agressão/psicologia , Afinamento Cortical Cerebral/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Psicologia do Esquizofrênico , Adulto , Estudos de Casos e Controles , Afinamento Cortical Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Estudos Prospectivos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologiaRESUMO
The preprocessing pipelines of the Human Connectome Project (HCP) were made publicly available for the neuroimaging community to apply the HCP analytic approach to data from non-HCP sources. The HCP analytic approach is surface-based for the cerebral cortex, uses the CIFTI "grayordinate" file format, provides greater statistical sensitivity than traditional volume-based analysis approaches, and allows for a more neuroanatomically-faithful representation of data. However, the HCP pipelines require the acquisition of specific images (namely T2w and field map) that historically have often not been acquired. Massive amounts of this 'legacy' data could benefit from the adoption of HCP-style methods. However, there is currently no published framework, to our knowledge, for adapting HCP preprocessing to "legacy" data. Here we present the ciftify project, a parsimonious analytic framework for adapting key modules from the HCP pipeline into existing structural workflows using FreeSurfer's recon_all structural and existing functional preprocessing workflows. Within this framework, any functional dataset with an accompanying (i.e. T1w) anatomical data can be analyzed in CIFTI format. To simplify usage for new data, the workflow has been bundled with fMRIPrep following the BIDS-app framework. Finally, we present the package and comment on future neuroinformatics advances that may accelerate the movement to a CIFTI-based grayordinate framework.
Assuntos
Encéfalo , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , HumanosRESUMO
A novel mega-analytical approach that reduced methodological variance was evaluated using a multisite diffusion tensor imaging (DTI) fractional anisotropy (FA) data by comparing white matter integrity in people with schizophrenia to controls. Methodological variance was reduced through regression of variance captured from quality assurance (QA) and by using Marchenko-Pastur Principal Component Analysis (MP-PCA) denoising. N = 192 (119 patients/73 controls) data sets were collected at three sites equipped with 3T MRI systems: GE MR750, GE HDx, and Siemens Trio. DTI protocol included five b = 0 and 60 diffusion-sensitized gradient directions (b = 1,000 s/mm2 ). In-house DTI QA protocol data was acquired weekly using a uniform phantom; factor analysis was used to distil into two orthogonal QA factors related to: SNR and FA. They were used as site-specific covariates to perform mega-analytic data aggregation. The effect size of patient-control differences was compared to these reported by the enhancing neuro imaging genetics meta-analysis (ENIGMA) consortium before and after regressing QA variance. Impact of MP-PCA filtering was evaluated likewise. QA-factors explained â¼3-4% variance in the whole-brain average FA values per site. Regression of QA factors improved the effect size of schizophrenia on whole brain average FA values-from Cohen's d = .53 to .57-and improved the agreement between the regional pattern of FA differences observed in this study versus ENIGMA from r = .54 to .70. Application of MP-PCA-denoising further improved the agreement to r = .81. Regression of methodological variances captured by routine QA and advanced denoising that led to a better agreement with a large mega-analytic study.
Assuntos
Imagem de Tensor de Difusão , Metanálise como Assunto , Estudos Multicêntricos como Assunto/métodos , Garantia da Qualidade dos Cuidados de Saúde , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/instrumentação , Imagem de Tensor de Difusão/métodos , Humanos , Disseminação de Informação/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Garantia da Qualidade dos Cuidados de Saúde/métodos , Análise de Regressão , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Adulto JovemRESUMO
Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by â¼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2) = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R(2) = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.
Assuntos
Encéfalo/fisiologia , Expressão Facial , Variação Genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Encéfalo/metabolismo , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
Obesity, a major risk factor for cardiometabolic disease, is associated with variations in a number of structural properties in the adult brain, as assessed with magnetic resonance imaging (MRI). In this study, we investigated the cross-sectional relationship between visceral fat (VF), total body fat (TBF) and three MRI parameters in the brains of typically developing adolescents: (i) T1-weighted (T1W) signal intensity; (ii) T1W signal contrast between white matter (WM) and gray matter (GM); and (iii) magnetization transfer ratio (MTR). In a community-based sample of 970 adolescents (12-18 years old, 466 males), VF was quantified using MRI, and total body fat was measured using a multifrequency bioimpedance. T1W images of the brain were used to determine signal intensity in lobar GM and WM, as well as WM:GM signal contrast. A magnetization transfer (MT) sequence of MT(ON) and MT(OFF) was used to obtain MTR in GM and WM. We found that both larger volumes of VF and more TBF were independently associated with higher signal intensity in WM and higher WM:GM signal contrast, as well as higher MTR in both GM and WM. These relationships were independent of a number of potential confounders, including age, sex, puberty stage, household income and height. Our results suggest that both visceral fat and fat deposited elsewhere in the body are associated independently with structural properties of the adolescent brain. We speculate that these relationships suggest the presence of adiposity-related variations in phospholipid composition of brain lipids.
Assuntos
Adiposidade/fisiologia , Encéfalo/patologia , Adolescente , Criança , Estudos Transversais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Obesidade/complicações , Obesidade/patologiaRESUMO
The pituitary gland is a key structure in the hypothalamic-pituitary-gonadal (HPG) axis--it plays an important role in sexual maturation during puberty. Despite its small size, its volume can be quantified using magnetic resonance imaging (MRI). Here, we study a cohort of 962 typically developing adolescents from the Saguenay Youth Study and estimate pituitary volumes using a newly developed multi-atlas segmentation method known as the MAGeT Brain algorithm. We found that age and puberty stage (controlled for age) each predicts adjusted pituitary volumes (controlled for total brain volume) in both males and females. Controlling for the effects of age and puberty stage, total testosterone and estradiol levels also predict adjusted pituitary volumes in males and pre-menarche females, respectively. These findings demonstrate that the pituitary gland grows during adolescence, and its volume relates to circulating plasma-levels of sex steroids in both males and females.
Assuntos
Adolescente/fisiologia , Algoritmos , Estradiol/sangue , Imageamento Tridimensional/métodos , Hipófise/crescimento & desenvolvimento , Puberdade/fisiologia , Testosterona/sangue , Fatores Etários , Criança , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão/fisiologia , Hipófise/anatomia & histologia , Puberdade/sangue , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores Sexuais , Adulto JovemRESUMO
BACKGROUND: Individuals with schizophrenia spectrum disorders (SSD) often demonstrate cognitive impairments, associated with poor functional outcomes. While neurobiological heterogeneity has posed challenges when examining social cognition in SSD, it provides a unique opportunity to explore brain-behavior relationships. The aim of this study was to investigate the relationship between individual variability in functional connectivity during resting state and the performance of a social task and social and non-social cognition in a large sample of controls and individuals diagnosed with SSD. METHODS: Neuroimaging and behavioral data were analyzed for 193 individuals with SSD and 155 controls (total n = 348). Individual variability was quantified through mean correlational distance (MCD) of functional connectivity between participants; MCD was defined as a global 'variability score'. Pairwise correlational distance was calculated as 1 - the correlation coefficient between a given pair of participants, and averaging distance from one participant to all other participants provided the mean correlational distance metric. Hierarchical regressions were performed on variability scores derived from resting state and Empathic Accuracy (EA) task functional connectivity data to determine potential predictors (e.g., age, sex, neurocognitive and social cognitive scores) of individual variability. RESULTS: Group comparison between SSD and controls showed greater SSD MCD during rest (p = 0.00038), while no diagnostic differences were observed during task (p = 0.063). Hierarchical regression analyses demonstrated the persistence of a significant diagnostic effect during rest (p = 0.008), contrasting with its non-significance during the task (p = 0.50), after social cognition was added to the model. Notably, social cognition exhibited significance in both resting state and task conditions (both p = 0.01). CONCLUSIONS: Diagnostic differences were more prevalent during unconstrained resting scans, whereas the task pushed participants into a more common pattern which better emphasized transdiagnostic differences in cognitive abilities. Focusing on variability may provide new opportunities for interventions targeting specific cognitive impairments to improve functional outcomes.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos Psicóticos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Cognição , DescansoRESUMO
Functional impairments contribute to poor quality of life in schizophrenia spectrum disorders (SSD). We sought to (Objective I) define the main functional phenotypes in SSD, then (Objective II) identify key biopsychosocial correlates, emphasizing interpretable data-driven methods. Objective I was tested on independent samples: Dataset I (N = 282) and Dataset II (N = 317), with SSD participants who underwent assessment of multiple functioning areas. Participants were clustered based on functioning. Objective II was evaluated in Dataset I by identifying key features for classifying functional phenotype clusters from among 65 sociodemographic, psychological, clinical, cognitive, and brain volume measures. Findings were replicated across latent discriminant analyses (LDA) and one-vs.-rest binomial regularized regressions to identify key predictors. We identified three clusters of participants in each dataset, demonstrating replicable functional phenotypes: Cluster 1-poor functioning across domains; Cluster 2-impaired Role Functioning, but partially preserved Independent and Social Functioning; Cluster 3-good functioning across domains. Key correlates were Avolition, anhedonia, left hippocampal volume, and measures of emotional intelligence and subjective social experience. Avolition appeared more closely tied to role functioning, and anhedonia to independent and social functioning. Thus, we found three replicable functional phenotypes with evidence that recovery may not be uniform across domains. Avolition and anhedonia were both critical but played different roles for different functional domains. It may be important to identify critical functional areas for individual patients and target interventions accordingly.
RESUMO
Fractional amplitude of low-frequency fluctuation (fALFF) is a validated measure of resting-state spontaneous brain activity. Previous fALFF findings in autism and schizophrenia spectrum disorders (ASDs and SSDs) have been highly heterogeneous. We aimed to use fALFF in a large sample of typically developing control (TDC), ASD and SSD participants to explore group differences and relationships with inter-individual variability of fALFF maps and social cognition. fALFF from 495 participants (185 TDC, 68 ASD, and 242 SSD) was computed using functional magnetic resonance imaging as signal power within two frequency bands (i.e., slow-4 and slow-5), normalized by the power in the remaining frequency spectrum. Permutation analysis of linear models was employed to investigate the relationship of fALFF with diagnostic groups, higher-level social cognition, and lower-level social cognition. Each participant's average distance of fALFF map to all others was defined as a variability score, with higher scores indicating less typical maps. Lower fALFF in the visual and higher fALFF in the frontal regions were found in both SSD and ASD participants compared with TDCs. Limited differences were observed between ASD and SSD participants in the cuneus regions only. Associations between slow-4 fALFF and higher-level social cognitive scores across the whole sample were observed in the lateral occipitotemporal and temporoparietal junction. Individual variability within the ASD and SSD groups was also significantly higher compared with TDC. Similar patterns of fALFF and individual variability in ASD and SSD suggest some common neurobiological deficits across these related heterogeneous conditions.
RESUMO
BACKGROUND: Schizophrenia Spectrum Disorders (SSDs), which are characterized by social cognitive deficits, have been associated with dysconnectivity in "unimodal" (e.g., visual, auditory) and "multimodal" (e.g., default-mode and frontoparietal) cortical networks. However, little is known regarding how such dysconnectivity relates to social and non-social cognition, and how such brain-behavioral relationships associate with clinical outcomes of SSDs. METHODS: We analyzed cognitive (non-social and social) measures and resting-state functional magnetic resonance imaging data from the 'Social Processes Initiative in Neurobiology of the Schizophrenia(s) (SPINS)' study (247 stable participants with SSDs and 172 healthy controls, ages 18-55). We extracted gradients from parcellated connectomes and examined the association between the first 3 gradients and the cognitive measures using partial least squares correlation (PLSC). We then correlated the PLSC dimensions with functioning and symptoms in the SSDs group. RESULTS: The SSDs group showed significantly lower differentiation on all three gradients. The first PLSC dimension explained 68.53% (p<.001) of the covariance and showed a significant difference between SSDs and Controls (bootstrap p<.05). PLSC showed that all cognitive measures were associated with gradient scores of unimodal and multimodal networks (Gradient 1), auditory, sensorimotor, and visual networks (Gradient 2), and perceptual networks and striatum (Gradient 3), which were less differentiated in SSDs. Furthermore, the first dimension was positively correlated with negative symptoms and functioning in the SSDs group. CONCLUSIONS: These results suggest a potential role of lower differentiation of brain networks in cognitive and functional impairments in SSDs.