Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biomech Eng ; 144(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35388396

RESUMO

The level of congruence between the articulating surfaces of a diarthrodial joint can vary substantially between individuals. Quantifying joint congruence using the most widespread metric, the "congruence index," is not straightforward: the areas of the segmented bone that constitute the articular surfaces require accurate identification, their shape must be carefully described with appropriate functions, and the relative orientation of the surfaces measured precisely. In this work, we propose a new method of measuring joint congruence, which does not require these steps. First, a finite element (FE) simulation of an elastic layer compressed between each set of segmented bones is performed. These are then interpreted using the elastic foundation model, enabling an equivalent, but simpler, contact geometry to be identified. From this, the equivalent radius (quantification of joint congruence) is found. This defines the radius of a sphere contacting plane (or "ball on flat") that produces an equivalent contact to that in each joint. The minimal joint space width (in this joint position) can also be estimated from the FE simulations. The new method has been applied to ten healthy instances of the thumb metacarpophalangeal (MCP) joint. The ten thumb MCPs had similar levels and variability of congruence as the other diarthrodial joints that have been characterized previously. This new methodology enables efficient quantification of joint congruence and minimal joint space width directly from CT- or MRI-derived bone geometry in any relative orientation. It lends itself to large data sets and coupling with kinematic models.


Assuntos
Osso e Ossos , Polegar , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Pressão
2.
Clin Orthop Relat Res ; 474(11): 2405-2413, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27020431

RESUMO

BACKGROUND: Both the material and geometry of a total knee arthroplasty (TKA) component influence the induced periprosthetic bone strain field. Strain, a measure of the local relative deformation in a structure, corresponds to the mechanical stimulus that governs bone remodeling and is therefore a useful in vitro biomechanical measure for assessing the response of bone to new implant designs and materials. A polyetheretherketone (PEEK) femoral implant has the potential to promote bone strains closer to that of natural bone as a result of its low elastic modulus compared with cobalt-chromium (CoCr). QUESTIONS/PURPOSES: In the present study, we used a Digital Image Correlation (DIC) technique to answer the following question: Does a PEEK TKA femoral component induce a more physiologically normal bone strain distribution than a CoCr component? To achieve this, a DIC test protocol was developed for periprosthetic bone strain assessment using an analog model; the protocol aimed to minimize errors in strain assessment through the selection of appropriate analysis parameters. METHODS: Three synthetic bone femurs were used in this experiment. One was implanted with a CoCr femoral component and one with a PEEK femoral component. The third (unimplanted) femur was intact and used as the physiological reference (control) model. All models were subjected to standing loads on the corresponding polyethylene (ultrahigh-molecular-weight polyethylene) tibial component, and speckle image data were acquired for surface strain analysis using DIC in six repeat tests. The strain in 16 regions of interest on the lateral surface of each of the implanted bone models was plotted for comparison with the corresponding strains in the intact case. A Wilcoxon signed-rank test was used to test for difference at the 5% significance level. RESULTS: Surface analog bone strain after CoCr implantation indicated strain shielding (R2 = 0.6178 with slope, ß = 0.4314) and was lower than the intact case (p = 0.014). The strain after implantation with the PEEK implant deviated less from the intact case (R2 = 0.7972 with slope ß = 0.939) with no difference (p = 0.231). CONCLUSIONS: The strain shielding observed with the contemporary CoCr implant, consistent with clinical bone mineral density change data reported by others, may be reduced by using a PEEK implant. CLINICAL RELEVANCE: This bone analog in vitro study suggests that a PEEK femoral component could transfer more physiologically normal bone strains with a potentially reduced stress shielding effect, which may improve long-term bone preservation. Additional studies including paired cadaver tests are necessary to test the hypothesis further.


Assuntos
Artroplastia do Joelho/instrumentação , Ligas de Cromo/química , Fêmur/cirurgia , Cetonas/química , Articulação do Joelho/cirurgia , Prótese do Joelho , Polietilenoglicóis/química , Artroplastia do Joelho/efeitos adversos , Benzofenonas , Fenômenos Biomecânicos , Módulo de Elasticidade , Fêmur/fisiopatologia , Processamento de Imagem Assistida por Computador , Articulação do Joelho/fisiopatologia , Teste de Materiais , Modelos Anatômicos , Polímeros , Desenho de Prótese , Falha de Prótese , Estresse Mecânico , Propriedades de Superfície
3.
J Biomech Eng ; 136(4)2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337038

RESUMO

Periprosthetic bone remodeling is frequently observed after total hip replacement. Reduced bone density increases the implant and bone fracture risk, and a gross loss of bone density challenges fixation in subsequent revision surgery. Computational approaches allow bone remodeling to be predicted in agreement with the general clinical observations of proximal resorption and distal hypertrophy. However, these models do not reproduce other clinically observed bone density trends, including faster stabilizing mid-stem density losses, and loss-recovery trends around the distal stem. These may resemble trends in postoperative joint loading and activity, during recovery and rehabilitation, but the established remodeling prediction approach is often used with identical pre- and postoperative load and activity assumptions. Therefore, this study aimed to evaluate the influence of pre- to postoperative changes in activity and loading upon the predicted progression of remodeling. A strain-adaptive finite element model of a femur implanted with a cemented Charnley stem was generated, to predict 60 months of periprosthetic remodeling. A control set of model input data assumed identical pre- and postoperative loading and activity, and was compared to the results obtained from another set of inputs with three varying activity and load profiles. These represented activity changes during rehabilitation for weak, intermediate and strong recoveries, and pre- to postoperative joint force changes due to hip center translation and the use of walking aids. Predicted temporal bone density change trends were analyzed, and absolute bone density changes and the time to homeostasis were inspected, alongside virtual X-rays. The predicted periprosthetic bone density changes obtained using modified loading inputs demonstrated closer agreement with clinical measurements than the control. The modified inputs also predicted the clinically observed temporal density change trends, but still under-estimated density loss during the first three postoperative months. This suggests that other mechanobiological factors have an influence, including the repair of surgical micro-fractures, thermal damage and vascular interruption. This study demonstrates the importance of accounting for pre- to postoperative changes in joint loading and patient activity when predicting periprosthetic bone remodeling. The study's main weakness is the use of an individual patient model; computational expense is a limitation of all previously reported iterative remodeling analysis studies. However, this model showed sufficient computational efficiency for application in probabilistic analysis, and is an easily implemented modification of a well-established technique.


Assuntos
Artroplastia de Quadril , Cimentos Ósseos , Remodelação Óssea , Fêmur/fisiologia , Fêmur/cirurgia , Análise de Elementos Finitos , Suporte de Carga , Absorção Fisiológica , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Período Pré-Operatório
4.
Access Microbiol ; 6(7)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130739

RESUMO

Here, we report on the one hundred and twenty-five bacterial strains made available by the National Collection of Type Cultures in 2022 alongside a commentary on the strains, their provenance and significance.

5.
Proc Inst Mech Eng H ; 227(2): 162-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23513987

RESUMO

The failure mechanisms of acetabular prostheses may be investigated by understanding the changes in load transfer due to implantation and using the analysis of the implant-bone micromotion. Computational finite element (FE) models allow detailed mechanical analysis of the implant-bone structure, but their validity must be assessed as a first step, before they can be employed in preclinical investigations. In this study, FE models of composite hemi-pelvises, intact and implanted with an acetabular cup, were experimentally validated. Strains and implant-bone micromotions in the hemi-pelvises were compared with those predicted by the equivalent FE models. Regression analysis indicated close agreement between the measured and FE strains, with a high correlation coefficient (0.95-0.98), a low standard error (SE) (36-53 mu epsilon) and a low error in regression slope (7%-11%). Measured micromotions along three orthogonal directions were small, less than 30 microm, whereas the FE-predicted values were found to be less than 85 .m. Although the trends were similar, the deviations are due to artefacts in experimental measurement and additional imperfections in recreating experimental loading and boundary conditions in the FE model. This supports the FE model as a valid predictor of the measured strain in the composite pelvis models, confirming its suitability for further computational investigations on acetabular prostheses.


Assuntos
Acetábulo/fisiopatologia , Acetábulo/cirurgia , Prótese de Quadril , Modelos Biológicos , Ossos Pélvicos/fisiopatologia , Ossos Pélvicos/cirurgia , Biomimética/métodos , Força Compressiva , Simulação por Computador , Módulo de Elasticidade , Análise de Falha de Equipamento , Humanos , Movimento (Física) , Movimento , Desenho de Prótese , Estresse Mecânico , Resistência à Tração , Suporte de Carga
6.
J Biomech Eng ; 134(8): 081003, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938356

RESUMO

A detailed understanding of the changes in load transfer due to implantation is necessary to identify potential failure mechanisms of orthopedic implants. Computational finite element (FE) models provide full field data on intact and implanted bone structures, but their validity must be assessed for clinical relevance. The aim of this study was to test the validity of FE predicted strain distributions for the intact and implanted pelvis using the digital image correlation (DIC) strain measurement technique. FE models of an in vitro hemipelvis test setup were produced, both intact and implanted with an acetabular cup. Strain predictions were compared to DIC and strain rosette measurements. Regression analysis indicated a strong linear relationship between the measured and predicted strains, with a high correlation coefficient (R = 0.956 intact, 0.938 implanted) and a low standard error of the estimate (SE = 69.53 µÎµ, 75.09 µÎµ). Moreover, close agreement between the strain rosette and DIC measurements improved confidence in the validity of the DIC technique. The FE model therefore was supported as a valid predictor of the measured strain distribution in the intact and implanted composite pelvis models, confirming its suitability for further computational investigations.


Assuntos
Análise de Elementos Finitos , Processamento de Imagem Assistida por Computador , Teste de Materiais , Pelve , Poliuretanos , Próteses e Implantes , Acetábulo/fisiologia , Remodelação Óssea , Estresse Mecânico
7.
Front Med Technol ; 3: 664259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047921

RESUMO

Introduction: SARS-CoV-2 infection is a global pandemic. Personal Protective Equipment (PPE) to protect healthcare workers has been a recurrent challenge in terms of global stocks, supply logistics and suitability. In some settings, around 20% of healthcare workers treating COVID-19 cases have become infected, which leads to staff absence at peaks of the pandemic, and in some cases mortality. Methods: To address shortcomings in PPE, we developed a simple powered air purifying respirator, made from inexpensive and widely available components. The prototype was designed to minimize manufacturing complexity so that derivative versions could be developed in low resource settings with minor modification. Results: The "Personal Respirator - Southampton" (PeRSo) delivers High-Efficiency Particulate Air (HEPA) filtered air from a battery powered fan-filter assembly into a lightweight hood with a clear visor that can be comfortably worn for several hours. Validation testing demonstrates that the prototype removes microbes, avoids excessive CO2 build-up in normal use, and passes fit test protocols widely used to evaluate standard N95/FFP2 and N99/FFP3 face masks. Feedback from doctors and nurses indicate the PeRSo prototype was preferred to standard FFP2 and FFP3 masks, being more comfortable and reducing the time and risk of recurrently changing PPE. Patients report better communication and reassurance as the entire face is visible. Conclusion: Rapid upscale of production of cheaply produced powered air purifying respirators, designed to achieve regulatory approval in the country of production, could protect healthcare workers from infection and improve healthcare delivery during the COVID-19 pandemic.

8.
Materials (Basel) ; 13(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932608

RESUMO

The survivorship of cementless orthopaedic implants may be related to their initial stability; insufficient press-fit can lead to excessive micromotion between the implant and bone, joint pain, and surgical revision. However, too much interference between implant and bone can produce excessive strains and damage the bone, which also compromises stability. An understanding of the nature and mechanisms of strain generation during implantation would therefore be valuable. Previous measurements of implantation strain have been limited to local discrete or surface measurements. In this work, we devise a Digital Volume Correlation (DVC) methodology to measure the implantation strain throughout the volume. A simplified implant model was implanted into analogue bone media using a customised loading rig, and a micro-CT protocol optimised to minimise artefacts due to the presence of the implant. The measured strains were interpreted by FE modelling of the displacement-controlled implantation, using a bilinear elastoplastic constitutive model for the analogue bone. The coefficient of friction between the implant and bone was determined using the experimental measurements of the reaction force. Large strains at the interface between the analogue bone and implant produced localised deterioration of the correlation coefficient, compromising the ability to measure strains in this region. Following correlation coefficient thresholding (removing strains with a coefficient less than 0.9), the observed strain patterns were similar between the DVC and FE. However, the magnitude of FE strains was approximately double those measured experimentally. This difference suggests the need for improvements in the interface failure model, for example, to account for localised buckling of the cellular analogue bone structure. A further recommendation from this work is that future DVC experiments involving similar geometries and structures should employ a subvolume size of 0.97 mm as a starting point.

9.
Materials (Basel) ; 13(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906701

RESUMO

Personalised prosthetic sockets are fabricated by expert clinicians in a skill- and experience-based process, with research providing tools to support evidence-based practice. We propose that digital volume correlation (DVC) may offer a deeper understanding of load transfer from prosthetic sockets into the residual limb, and tissue injury risk. This study's aim was to develop a transtibial amputated limb analogue for volumetric strain estimation using DVC, evaluating its ability to distinguish between socket designs. A soft tissue analogue material was developed, comprising silicone elastomer and sand particles as fiducial markers for image correlation. The material was cast to form an analogue residual limb informed by an MRI scan of a person with transtibial amputation, for whom two polymer check sockets were produced by an expert prosthetist. The model was micro-CT scanned according to (i) an unloaded noise study protocol and (ii) a case study comparison between the two socket designs, loaded to represent two-legged stance. The scans were reconstructed to give 108 µm voxels. The DVC noise study indicated a 64 vx subvolume and 50% overlap, giving better than 0.32% strain sensitivity, and ~3.5 mm spatial resolution of strain. Strain fields induced by the loaded sockets indicated tensile, compressive and shear strain magnitudes in the order of 10%, with a high signal:noise ratio enabling distinction between the two socket designs. DVC may not be applicable for socket design in the clinical setting, but does offer critical 3D strain information from which existing in vitro and in silico tools can be compared and validated to support the design and manufacture of prosthetic sockets, and enhance the biomechanical understanding of the load transfer between the limb and the prosthesis.

10.
Proc Inst Mech Eng H ; 233(9): 954-960, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31210622

RESUMO

The validity of conclusions drawn from pre-clinical tests on orthopaedic devices depends upon accurate characterisation of the support materials: frequently, polymer foam analogues. These materials often display anisotropic mechanical behaviour, which may considerably influence computational modelling predictions and interpretation of experiments. Therefore, this study sought to characterise the anisotropic mechanical properties of a range of commonly used analogue bone materials, using non-contact multi-point optical extensometry method to account for the effects of machine compliance and uneven loading. Testing was conducted on commercially available 'cellular', 'solid' and 'open-cell' Sawbone blocks with a range of densities. Solid foams behaved largely isotropically. However, across the available density range of cellular foams, the average Young's modulus was 23%-31% lower (p < 0.005) perpendicular to the foaming direction than parallel to it, indicating elongation of cells with foaming. The average Young's modulus of open-celled foams was 25%-59% higher (p < 0.05) perpendicular to the foaming direction than parallel to it. This is thought to result from solid planes of material that were observed perpendicular to the foaming direction, stiffening the bulk material. The presented data represent a reference to help researchers design, model and interpret tests using these materials.


Assuntos
Materiais Biomiméticos , Osso e Ossos , Força Compressiva , Teste de Materiais/métodos , Fenômenos Ópticos , Estresse Mecânico , Anisotropia , Fenômenos Biomecânicos , Módulo de Elasticidade , Distribuição de Poisson
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2073-2076, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946309

RESUMO

This paper presents an architecture for generalized predictive control for an active prosthetic socket system, based on a cost function performance index measure for minimization of residual limb tissue injury. Finite element analysis of a transtibial residuum model donned with a total surface bearing socket was used to provide controller training data and biomechanical rationale for deep tissue injury risk assessment, by estimating the internal deformation state of the soft tissues and the residuum-socket interface loading under a range of prosthetic loading instances. The results demonstrate the concept of this approach for interface actuation modelled as translational spring and damper systems.


Assuntos
Membros Artificiais , Modelos Anatômicos , Desenho de Prótese , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos
12.
PLoS One ; 12(12): e0186754, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216199

RESUMO

This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique's application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets.


Assuntos
Arqueologia , Modelos Estatísticos , Dente/anatomia & histologia , Automação , Humanos , Análise de Componente Principal
13.
J Rehabil Res Dev ; 53(2): 207-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148905

RESUMO

Successful prosthetic rehabilitation following lower-limb amputation depends upon a safe and comfortable socket-residual limb interface. Current practice predominantly uses a subjective, iterative process to establish socket shape, often requiring several visits to a prosthetist. This study proposes an objective methodology for residual-limb shape scanning and analysis by high-resolution, automated measurements. A three-dimensional printed "analog" residuum was scanned with three surface digitizers on 10 occasions. Accuracy was measured by the scan height error between repeat analog scans and the computer-aided design (CAD) geometry and the scan versus CAD volume. Subsequently, 20 male residuum casts from ambulatory individuals with transtibial amputation were scanned by two observers, and 10 were repeat-scanned by one observer. The shape files were aligned spatially and geometric measurements extracted. Repeatability was evaluated by intraclass correlation, Bland-Altman analysis of scan volumes, and pairwise root-mean-square error ranges of scan area and width profiles. Submillimeter accuracy was achieved when scanning the analog shape, and using male residuum casts the process was highly repeatable within and between observers. The technique provides clinical researchers and prosthetists the capability to establish their own quantitative, objective, multipatient data sets, providing an evidence base for training, long-term follow-up, and interpatient outcome comparison, for decision support in socket design.


Assuntos
Cotos de Amputação/diagnóstico por imagem , Amputação Cirúrgica/reabilitação , Membros Artificiais , Ajuste de Prótese/métodos , Desenho Assistido por Computador , Humanos , Imageamento Tridimensional , Masculino , Variações Dependentes do Observador , Desenho de Prótese , Reprodutibilidade dos Testes , Tíbia
14.
Proc Inst Mech Eng H ; 229(8): 549-59, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26112349

RESUMO

Alterations in bone strain as a result of implantation may contribute towards periprosthetic bone density changes after total hip arthroplasty. Computational models provide full-field strain predictions in implant-bone constructs; however, these predictions should be verified using experimental models wherever it is possible. In this work, finite element predictions of surface strains in intact and implanted composite femurs were verified using digital image correlation. Relationships were sought between post-implantation strain states across seven defined Gruen zones and clinically observed longer-term bone density changes. Computational predictions of strain distributions in intact and implanted femurs were compared to digital image correlation measurements in two regions of interest. Regression analyses indicated a strong linear correlation between measurements and predictions (R = 0.927 intact, 0.926 implanted) with low standard error (standard error = 38 µÎµ intact, 26 µÎµ implanted). Pre- to post-operative changes in measured and predicted surface strains were found to relate qualitatively to clinically observed volumetric bone density changes across seven Gruen zones: marked proximal bone density loss corresponded with a 50%-64% drop in surface strain, and slight distal density changes corresponded with 4%-14% strain increase. These results support the use of digital image correlation as a pre-clinical tool for predicting post-implantation strain shielding, indicative of long-term bone adaptations.


Assuntos
Artroplastia de Quadril , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Fêmur/fisiologia , Modelos Biológicos , Remodelação Óssea , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Estresse Mecânico
15.
Proc Inst Mech Eng H ; 227(12): 1255-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23966364

RESUMO

The shape of the acetabular cartilage follows the contact stress distribution across the joint. Accurate characterisation of this geometry may be useful for the development of acetabular cup devices that are more biomechanically compliant. In this study, the geometry of the acetabular cartilage was characterised by taking plaster moulds of the acetabulum from 24 dry bone human pelvises and digitising the mould shapes using a three-dimensional laser scanner. The articular bone surface geometry was analysed, and the shape of the acetabulum was approximated by fitting a best-fit sphere. To test the hypothesis that the acetabulum is non-spherical, a best-fit ellipsoid was also fitted to the geometry. In each case, points around the acetabular notch edge that disclosed the articular surface geometry were identified, and vectors were drawn between these and the best-fit sphere or ellipsoid centre. The significantly larger z radii (into the pole) of the ellipsoids indicated that the acetabulum was non-spherical and could imply that the kinematics of the hip joint is more complex than purely rotational motion, and the traditional ball-and-socket replacement may need to be updated to reflect this motion. The acetabular notch edges were observed to be curved, with males exhibiting deeper, wider and shorter notches than females, although the difference was not statistically significant (mean: p = 0.30) and supports the use of non-gender-specific models in anatomical studies.


Assuntos
Acetábulo/anatomia & histologia , Pontos de Referência Anatômicos/anatomia & histologia , Cartilagem Articular/anatomia & histologia , Articulação do Quadril/anatomia & histologia , Modelos Anatômicos , Pelve/anatomia & histologia , Simulação por Computador , Feminino , Humanos , Masculino
16.
Artigo em Inglês | MEDLINE | ID: mdl-21547786

RESUMO

Hip resurfacing demonstrates good survivorship as a treatment for young patients with osteoarthritis, but occasional implant loosening failures occur. On the femoral side there is radiographic evidence suggesting that the implant stem bears load, which is thought to lead to proximal stress shielding and adaptive bone remodelling. Previous attempts aimed at reproducing clinically observed bone adaptations in response to the implant have not recreated the full set of common radiographic changes, so a modified bone adaptation algorithm was developed in an attempt to replicate more closely the effects of the prosthesis on the host bone. The algorithm features combined implant-bone interface healing and continuum bone remodelling. It was observed that remodelling simulations that accounted for progressive gap filling at the implant-bone interface predicted the closest periprosthetic bone density changes to clinical X-rays and DEXA data. This model may contribute to improved understanding of clinical failure mechanisms with traditional hip resurfacing designs and enable more detailed pre-clinical analysis of new designs.


Assuntos
Prótese de Quadril , Adaptação Fisiológica , Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/métodos , Fenômenos Biomecânicos , Engenharia Biomédica , Densidade Óssea , Remodelação Óssea/fisiologia , Simulação por Computador , Análise de Elementos Finitos , Prótese de Quadril/efeitos adversos , Humanos , Modelos Biológicos , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Quadril/fisiopatologia , Osteoartrite do Quadril/cirurgia , Falha de Prótese , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA