Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
J Endocrinol Invest ; 47(8): 2061-2074, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38337094

RESUMO

PURPOSE: Liver-expressed antimicrobial peptide 2 (LEAP-2) has been recently identified as the endogenous non-competitive allosteric antagonist of the growth hormone secretagogue receptor 1a (GHSR1a). In rodents, LEAP-2 blunts ghrelin-induced feeding and its plasma levels are modulated in response to nutritional status, being decreased upon fasting and increased in high-fat diet (HFD) fed mice. Clinical data support the regulation of circulating LEAP-2 by nutrient availability in humans. In this work, our primary objective was to examine the chronic effects of ghrelin and LEAP-2 administration on food intake, adiposity, and energy expenditure in young mice subjected to standard and HFD at both room temperature and at thermoneutrality. Furthermore, we aimed to assess the impact of these two hormones on aging mice. RESULTS: Our results indicate that LEAP-2 produces a significant decrease of body weight and adiposity, an increase in energy expenditure, and activation of the thermogenic program in white and brown adipose tissue depots. However, this effect is not maintained under HFD or under thermoneutral conditions and is only partially observed in aging mice. CONCLUSION: In summary our studies describe the central effects of LEAP-2 within distinct experimental contexts, and contribute to the comprehension of LEAP-2's role in energy metabolism.


Assuntos
Envelhecimento , Dieta Hiperlipídica , Metabolismo Energético , Grelina , Homeostase , Animais , Grelina/farmacologia , Grelina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Envelhecimento/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Masculino , Peptídeos Catiônicos Antimicrobianos/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Adiposidade/fisiologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Proteínas Sanguíneas
2.
Osteoporos Int ; 32(4): 705-714, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32974730

RESUMO

Rheumatoid arthritis (RA) patients had a higher risk of developing low bone mineral density (BMD) or osteoporosis. RA patients on classic disease-modifying antirheumatic drug (c-DMARD) therapy showed significantly lower BMD than controls, while no significant differences in most parameters were found between RA patients receiving biological disease-modifying antirheumatic drugs (b-DMARDs) and controls. The 3D analysis allowed us to find changes in the trabecular and cortical compartments. INTRODUCTION: To evaluate cortical and trabecular bone involvement of the hip in RA patients by dual-energy X-ray absorptiometry (DXA) and 3D analysis. The secondary end-point was to evaluate bone involvement in patients treated with classic (c-DMARD) or biological (b-DMARD) disease-modifying antirheumatic drug therapies and the effect of the duration of the disease and corticosteroid therapy on 3D parameters. METHODS: A cross-sectional study of 105 RA patients and 100 subjects as a control group (CG) matched by age, sex, and BMI was carried out. BMD was measured by DXA of the bilateral femoral neck (FN) and total hip (TH). The 3D analyses including trabecular and cortical BMD were performed on hip scans with the 3D-Shaper software. RESULTS: FN and TH BMD and trabecular and cortical vBMD were significantly lower in RA patients. The c-DMARD (n = 75) group showed significantly lower trabecular and cortical vBMD than the CG. Despite the lower values, the b-DMARD group (n = 30) showed no significant differences in most parameters compared with the CG. The trabecular and cortical 3D parameters were significantly lower in the group with an RA disease duration of 1 to 5 years than in the CG, and the trabecular vBMD was significantly lower in the group with a duration of corticosteroid therapy of 1 to 5 years than in the CG, while no significant differences were found by standard DXA in the same period. CONCLUSIONS: RA patients had a higher risk of developing low BMD or osteoporosis than controls. RA patients receiving c-DMARD therapy showed significantly lower BMD than controls, while no significant differences in most parameters were found between RA patients receiving b-DMARDs and controls. 3D-DXA allowed us to find changes in trabecular and cortical bone compartments in RA patients.


Assuntos
Artrite Reumatoide , Densidade Óssea , Absorciometria de Fóton , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Osso Cortical/diagnóstico por imagem , Estudos Transversais , Humanos
3.
Eur J Nutr ; 55(2): 529-536, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25743370

RESUMO

PURPOSE: Uroguanylin (UGN) is a 16 amino acid peptide produced mainly by intestinal epithelial cells. Nutrients intake increases circulating levels of prouroguanylin that is processed and converted to UGN to activate the guanylyl cyclase 2C receptor (GUCY2C). Given that the UGN-GUCY2C system has been proposed as a novel gut-brain endocrine axis regulating energy balance, the aim of the present study was to investigate the regulation of UGN protein levels in duodenum and circulating levels in lean and obese mice under different nutritional conditions and its potential interaction with leptin. METHODS: Swiss, C57BL/6 wild-type and ob/ob male adult mice under different nutritional conditions were used: fed ad libitum standard diet (control); 48 h fasting (fasted); 48 h fasting followed by 24 h of feeding (refed); and fed high-fat diet (45 %) during 10 weeks. In addition, peripheral leptin administration was performed. Intestinal uroguanylin expression was studied by Western blot analysis; plasma levels were measured by ELISA. RESULTS: Food deprivation significantly reduced plasma UGN levels, which were correlated with the lower protein levels of UGN in duodenum. These effects were reverted after refeeding and leptin challenge. Consistently, in ob/ob mice UGN expression was decreased, whereas leptin treatment up-regulated UGN levels in duodenum in these genetically modified mice compared to WT. Diet-induced obese mice displayed increased UGN levels in intestine and plasma in comparison with lean mice. CONCLUSIONS: Our findings suggest that UGN levels are correlated with energy balance status and that the regulation of UGN by nutritional status is leptin-dependent.


Assuntos
Mucosa Intestinal/metabolismo , Leptina/farmacologia , Peptídeos Natriuréticos/sangue , Estado Nutricional , Animais , Dieta Hiperlipídica , Metabolismo Energético , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Peptídeos Natriuréticos/genética , Regulação para Cima
4.
Diabetes Obes Metab ; 17(8): 789-99, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25962313

RESUMO

AIM: To investigate the role of brain glucagon-like peptide-1 (GLP-1) in pancreatic ß-cell function. METHODS: To determine the role of brain GLP-1 receptor (GLP-1R) on ß-cell function, we administered intracerebroventricular (i.c.v.) infusions of GLP-1 or the specific GLP-1 antagonist exendin-9 (Ex-9), in both an acute and a chronic setting. RESULTS: We observed that acute i.c.v. GLP-1 infusion potentiates glucose-stimulated insulin secretion (GSIS) and improves glucose tolerance, whereas central GLP-1R blockade with Ex-9 impaired glucose excursion after a glucose load. Sustained activation of central nervous system GLP-1R, however, did not produce any effect on either GSIS or glucose tolerance. Similarly, ex vivo GSIS performed in islets from mice chronically infused with i.c.v. GLP-1 resulted in no differences compared with controls. In addition, in mice fed a high-fat diet we observed that acute i.c.v. GLP-1 infusion improved glucose tolerance without changes in GSIS, while chronic GLP-1R activation had no effect on glucose homeostasis. CONCLUSIONS: Our results indicate that, under non-clamped conditions, brain GLP-1 plays a functional neuroendocrine role in the acute regulation of glucose homeostasis in both lean and obese rodents.


Assuntos
Encéfalo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Dieta Hiperlipídica , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Glucose/administração & dosagem , Homeostase/efeitos dos fármacos , Incretinas/administração & dosagem , Incretinas/farmacologia , Infusões Intraventriculares , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Horm Metab Res ; 45(13): 960-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23950036

RESUMO

The sirtuins are a family of highly conserved nicotine adenine dinucleotide (NAD+)-dependent deacetylases that act as cellular sensors to detect energy availability and regulate metabolic processes. Sirtuin 1 (SIRT1) is one of the family members that is activated in response to caloric restriction, acting on multiple targets in a wide range of tissues. Recent studies have shown that SIRT1 controls glucose and lipid metabolism in both liver and muscle, promotes fat mobilization, stimulates remodeling of white to brown fat, controls insulin secretion in the pancreas, and senses nutrient availability in the hypothalamus. SIRT1 is located in several areas of the brain and its central metabolic actions have attracted much attention in the last decade. In this short review, we summarize the main actions and molecular pathways triggered by SIRT1 that control feeding behavior, energy expenditure, glucose metabolism, and insulin sensitivity, with an emphasis on the emerging role of SIRT1 in the brain.


Assuntos
Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 1/metabolismo , Animais , Humanos
6.
Horm Metab Res ; 45(13): 935-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23913119

RESUMO

The prevalence of overweight and obesity in most developed countries has markedly increased during the last decades. In addition to genetic, hormonal, and metabolic influences, environmental factors like fetal and neonatal nutrition play key roles in the development of obesity. Interestingly, overweight during critical developmental periods of fetal and/or neonatal life has been demonstrated to increase the risk of obesity throughout juvenile life into adulthood. In spite of this evidence, the specific mechanisms underlying this fetal/neonatal programming are not perfectly understood. However, it is clear that circulating hormones such as insulin and leptin play a critical role in the development and programming of hypothalamic circuits regulating energy balance. Here, we review what is currently known about the impact of perinatal malnutrition on the mechanisms regulating body weight homeostasis. Understanding these molecular mechanisms may provide new targets for the treatment of obesity.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Transtornos da Nutrição do Lactente/metabolismo , Transtornos da Nutrição do Lactente/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Adulto , Animais , Feminino , Humanos , Hipotálamo/patologia , Lactente , Transtornos da Nutrição do Lactente/complicações , Transtornos da Nutrição do Lactente/patologia , Recém-Nascido , Masculino , Obesidade/etiologia , Obesidade/patologia
7.
Mediators Inflamm ; 2013: 479739, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23710116

RESUMO

The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH) secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way) and in vitro (adenopituitary cell cultures treated with the adipokine). Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism.


Assuntos
Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Resistina/farmacologia , Animais , Carboxiliases/genética , Carnitina O-Palmitoiltransferase/genética , Células Cultivadas , Ácido Graxo Sintases/genética , Ácidos Graxos/metabolismo , Técnicas In Vitro , Interleucina-6/genética , Lipase Lipoproteica/genética , Masculino , Hipófise/enzimologia , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/genética
8.
Diabetes Obes Metab ; 14(3): 234-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21981246

RESUMO

AIMS: Cannabinoids are known to control energy homeostasis. Atypical cannabinoids produce pharmacological effects via unidentified targets. We sought to investigate whether the atypical cannabinoid O-1602 controls food intake and body weight. METHODS: The rats were injected acutely or subchronically with O-1602, and the expression of several factors involved in adipocyte metabolism was assessed by real-time polymerase chain reaction. In vivo findings were corroborated with in vitro studies incubating 3T3-L1 adipocytes with O-1602, and measuring intracellular calcium and lipid accumulation. Finally, as some reports suggest that O-1602 is an agonist of the putative cannabinoid receptor GPR55, we tested it in mice lacking GPR55. RESULTS: Central and peripheral administration of O-1602 acutely stimulates food intake, and chronically increases adiposity. The hyperphagic action of O-1602 is mediated by the downregulation of mRNA and protein levels of the anorexigenic neuropeptide cocaine- and amphetamine-regulated transcript. The effects on fat mass are independent of food intake, and involve a decrease in the expression of lipolytic enzymes such as hormone sensitive lipase and adipose triglyceride lipase in white adipose tissue. Consistently, in vitro data showed that O-1602 increased the levels of intracellular calcium and lipid accumulation in adipocytes. Finally, we injected O-1602 in GPR55 -/- mice and found that O-1602 was able to induce feeding behaviour in GPR55-deficient mice. CONCLUSIONS: These findings show that O-1602 modulates food intake and adiposity independently of GPR55 receptor. Thus atypical cannabinoids may represent a novel class of molecules involved in energy balance.


Assuntos
Adiposidade/efeitos dos fármacos , Agonistas de Receptores de Canabinoides , Canabinoides/farmacologia , Cicloexanos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Resorcinóis/farmacologia , Adipócitos/metabolismo , Animais , Peso Corporal , Canabidiol/análogos & derivados , Metabolismo Energético , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Canabinoides/deficiência
9.
Metabolism ; 115: 154460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285180

RESUMO

BACKGROUND: Reproduction is tightly coupled to body energy and metabolic status. GnRH neurons, master elements and final output pathway for the brain control of reproduction, directly or indirectly receive and integrate multiple metabolic cues to regulate reproductive function. Yet, the molecular underpinnings of such phenomenon remain largely unfolded. AMP-activated protein kinase (AMPK), the fundamental cellular sensor that becomes activated in conditions of energy deficit, has been recently shown to participate in the control of Kiss1 neurons, essential gatekeepers of the reproductive axis, by driving an inhibitory valence in situations of energy scarcity at puberty. However, the contribution of AMPK signaling specifically in GnRH neurons to the metabolic control of reproduction remains unknown. METHODS: Double immunohistochemistry (IHC) was applied to evaluate expression of active (phosphorylated) AMPK in GnRH neurons and a novel mouse line, named GAMKO, with conditional ablation of the AMPK α1 subunit in GnRH neurons, was generated. GAMKO mice of both sexes were subjected to reproductive characterization, with attention to puberty and gonadotropic responses to kisspeptin and metabolic stress. RESULTS: A vast majority (>95%) of GnRH neurons co-expressed pAMPK. Female (but not male) GAMKO mice displayed earlier puberty onset and exaggerated LH (as surrogate marker of GnRH) responses to kisspeptin-10 at the prepubertal age. In adulthood, GAMKO females retained increased LH responsiveness to kisspeptin and showed partial resilience to the inhibitory effects of conditions of negative energy balance on the gonadotropic axis. The modulatory role of AMPK in GnRH neurons required preserved ovarian function, since the differences in LH pulsatility detected between GAMKO and control mice subjected to fasting were abolished in ovariectomized animals. CONCLUSIONS: Altogether, our data document a sex-biased, physiological role of AMPK signaling in GnRH neurons, as molecular conduit of the inhibitory actions of conditions of energy deficit on the female reproductive axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/sangue , Neurônios/metabolismo , Reprodução/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Ciclo Estral/metabolismo , Feminino , Kisspeptinas/farmacologia , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Fosforilação , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Am J Physiol Endocrinol Metab ; 299(3): E341-50, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20501877

RESUMO

Ghrelin is a stomach derivate peptide involved in energy homeostasis regulation, and ghrelin O-acyltransferase (GOAT) is the enzyme responsible for ghrelin acylation. Puberty is a period characterized by profound changes in the metabolic requirements and notable variations of sexual hormone levels. On the other hand, the weaning process is a fundamental modification of the diet, which implicates several adaptations of the gastrointestinal tract physiology. Until now the direct secretion of ghrelin by the stomach in these conditions, without interferences from other organs, has never been studied. The main objective of this article was to investigate how the stomach modulates ghrelin production and secretion as well as GOAT expression on these periods of life. Gastric ghrelin secretion is regulated through postnatal life in an independent way of gastric expression and circulating levels of this hormone. The present work shows a strong regulation of gastric ghrelin secretion by estrogens. The weaning strongly regulates gastric ghrelin secretion. Animals subjected to delayed weaning present a lower body weight than the corresponding controls. For the first time, it is shown that a noticeable decrease in circulating levels of testosterone and estrogens is associated with delay of weaning. GOAT mRNA levels in the stomach are strongly regulated by age, breastfeeding, and testosterone. In conclusion, the stomach itself regulates ghrelin and GOAT production to adapt the organism to the metabolic requirements demanded through each stage of life.


Assuntos
Aciltransferases/genética , Grelina/metabolismo , RNA Mensageiro/metabolismo , Maturidade Sexual/fisiologia , Estômago/fisiologia , Aciltransferases/biossíntese , Aciltransferases/metabolismo , Fatores Etários , Animais , Western Blotting , Estradiol/farmacologia , Feminino , Mucosa Gástrica/metabolismo , Grelina/genética , Imuno-Histoquímica , Técnicas In Vitro , Masculino , RNA Mensageiro/química , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Estômago/enzimologia , Testosterona/farmacologia , Desmame
11.
J Physiol ; 587(Pt 14): 3741-50, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19470778

RESUMO

Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a recently discovered adipocytokine mainly secreted from visceral adipose tissue, which plays a main role in insulin sensitivity. In this study, we have investigated the regulation of vaspin gene expression in rat white adipose tissue (WAT) in different physiological (nutritional status, pregnancy, age and gender) and pathophysiological (gonadectomy, thyroid status and growth hormone deficiency) settings known to be associated with energy homeostasis and alterations in insulin sensitivity. We have determined vaspin gene expression by real-time PCR. Vaspin was decreased after fasting and its levels were partially recovered after leptin treatment. Chronic treatment with metformin increased vaspin gene expression. Vaspin mRNA expression reached the highest peak at 45 days in both sexes after birth and its expression was higher in females than males, but its levels did not change throughout pregnancy. Finally, decreased levels of growth hormone and thyroid hormones suppressed vaspin expression. These findings suggest that WAT vaspin mRNA expression is regulated by nutritional status, and leptin seems to be the nutrient signal responsible for those changes. Vaspin is influenced by age and gender, and its expression is increased after treatment with insulin sensitizers. Finally, alterations in pituitary functions modify vaspin levels. Understanding the molecular mechanisms regulating vaspin will provide new insights into the pathogenesis of the metabolic syndrome.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica/fisiologia , Gordura Intra-Abdominal/enzimologia , Metformina/metabolismo , Estado Nutricional , Prenhez/metabolismo , Inibidores de Serina Proteinase/metabolismo , Animais , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
12.
Obes Surg ; 19(4): 484-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18855085

RESUMO

BACKGROUND: Existing medical therapeutic strategies to achieve and maintain clinically significant weight loss in morbid obesity remain limited and the biliopancreatic diversion (BPD) is still the most effective among the bariatric surgical procedures. Our objective was to evaluate the weight and food intake after this procedure in a rat model. METHODS: Rats randomly underwent one of the following protocols (1) BPD (n = 12) versus sham (n = 12) with a follow-up period of 30 days and (2) BPD (n = 4) versus pair-fed (PF; n = 4) with a follow-up period of 50 days. Under intraperitoneal anesthesia with ketamine-xilacine, a subcardinal corpo-antral gastrectomy was made, preserving the gastric fundus that was anastomosed to a jejunal limb after dissecting the proximal jejunum 5 cm below the ligament of Treitz to form the alimentary limb. The biliopancreatic limb was terminolaterally anastomosed to the distal ileum 5 cm above the ileocecal valve to form the common limb. Sham animals underwent only abdominal incision. Weight and food intake were measured every day. RESULTS: In protocol 1, after postoperative day 30, BPD rats exhibited a mean weight reduction of 17.9% while shams increased 12.4%. There was no difference in food intake adjusted per 100 g of body weight. In protocol 2, after postoperative day 50, BPD rats had a mean weight reduction of 22.6% and, despite increasing their caloric intake from a mean of 42.6 after 6 days to 65.8 kcal/day after 50 days, they kept a similar mean weight of 344.0 and 340.2 g, respectively; on the contrary, PF rats exhibited a 30.8% body weight gain. CONCLUSIONS: After the BPD, body weight is maintained independently of changes in food and energy intake.


Assuntos
Desvio Biliopancreático/métodos , Ingestão de Alimentos , Redução de Peso , Animais , Ingestão de Energia , Derivação Gástrica , Masculino , Período Pós-Operatório , Ratos , Ratos Sprague-Dawley
13.
Peptides ; 30(1): 139-45, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18634841

RESUMO

It is well established that reproductive function is gated by the state of energy reserves of the organism; conditions of metabolic stress and energy insufficiency being frequently coupled to disturbed reproductive maturation and/or infertility. In addition, obesity is also commonly linked to altered puberty onset and reproductive impairment. Such an impact of energy status on the reproductive axis is conveyed through a number of neuropeptide hormones and metabolic cues, whose nature and mechanisms of action have begun to be deciphered only in recent years. In this context, the emergence of kisspeptins, encoded by the KiSS-1 gene, and their receptor, GPR54, as indispensable signals for normal pubertal maturation and gonadal function, has raised the possibility that the KiSS-1/GRP54 system might also participate in coupling body energy status and reproduction. We revise herein the experimental evidence, gathered in rodent models, supporting the contention that the hypothalamic KiSS-1 system operates as a central conduit for conveying metabolic information onto the centers governing reproductive function, through a putative leptin-kisspeptin-GnRH pathway. Admittedly, key aspects of this 'metabolic' network involving the KiSS-1 system, such as its different peripheral regulators and central effectors, have not been fully elucidated. Nonetheless, the proposed hypothalamic circuitry, responsible for transmitting metabolic information onto the reproductive axis through KiSS-1 neurons, might explain, at least in part, the mechanisms for the well-known alterations of fertility linked to conditions of disturbed energy balance in humans, from anorexia nervosa to morbid obesity.


Assuntos
Reprodução/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Metabolismo Energético , Fertilidade/fisiologia , Gônadas/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Leptina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Supressoras de Tumor/genética
14.
J Cell Physiol ; 215(1): 140-50, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17941086

RESUMO

To investigate the mechanisms by which the hypothalamic peptide GHRH influences cell division, we analyzed its effects on the proliferation of two different cell lines: CHO-4, an ovary-derived cell line, and GH3, a pituitary-derived cell line. We found that GHRH induces the proliferation of pituitary-derived cells but inhibits the proliferation of ovary-derived cells. We further characterized this dual effect of GHRH to find that the cytoplasmic signals induced by this hormone are similar in both cell lines. Moreover, in CHO-4 cells GHRH stimulates two well-known positive cell cycle regulators, c-myc and cyclin D1, but is unable to induce the degradation of the negative cell cycle regulator p27(Kip1). Significantly, when the Pit-1/GHF-1 gene is exogenously expressed in CHO-4 cells, the negative effect of GHRH on the proliferation of these cells is attenuated. Furthermore, when the levels of Pit-1 are downregulated by siRNA in GH3-GHRHR cells, the positive effects of GHRH on the proliferation of these cells are diminished. These findings add to our understanding of the molecules involved in the regulation of cell proliferation by GHRH, as we demonstrate for the first time that Pit-1 is not only required to drive the expression of the GHRH receptor, as previously described, but is also needed for the downstream effects that occur after its activation to modulate cell proliferation. These data suggest that the regulation of cell proliferation in response to a specific growth factor depends in certain cell populations on the presence of a tissue-specific transcription factor.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/farmacologia , Somatotrofos/citologia , Somatotrofos/efeitos dos fármacos , Fator de Transcrição Pit-1/metabolismo , Animais , Células CHO , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , AMP Cíclico/biossíntese , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Especificidade de Órgãos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Ratos , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Fase S/efeitos dos fármacos , Soro , Somatotrofos/enzimologia , Transcrição Gênica/efeitos dos fármacos
15.
Endocrinology ; 149(7): 3390-402, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18403483

RESUMO

Adiponectin is an adipocyte hormone, with relevant roles in lipid metabolism and glucose homeostasis, recently involved in the control of different endocrine organs, such as the placenta, pituitary and, likely, the ovary. However, whether as described previously for other adipokines, such as leptin and resistin, adiponectin is expressed and/or conducts biological actions in the male gonad remains unexplored. In this study, we provide compelling evidence for the expression, putative hormonal regulation, and direct effects of adiponectin in the rat testis. Testicular expression of adiponectin was demonstrated along postnatal development, with a distinctive pattern of RNA transcripts and discernible protein levels that appeared mostly located at interstitial Leydig cells. Testicular levels of adiponectin mRNA were marginally regulated by pituitary gonadotropins but overtly modulated by metabolic signals, such as glucocorticoids, thyroxine, and peroxisome proliferator-activated receptor-gamma, whose effects were partially different from those on circulating levels of adiponectin. In addition, expression of the genes encoding adiponectin receptor (AdipoR)-1 and AdipoR2 was detected in the rat testis, with developmental changes and gonadotropin regulation for AdipoR2 mRNA, and prominent levels of AdipoR1 in seminiferous tubules. Moreover, recombinant adiponectin significantly inhibited basal and human choriogonadotropin-stimulated testosterone secretion ex vivo, whereas it failed to change relative levels of several Sertoli cell-expressed mRNAs, such as stem cell factor and anti-Müllerian hormone. In summary, our data are the first to document the expression, regulation and functional role of adiponectin in the rat testis. Taken together with its recently reported expression in the ovary and its effects on LH secretion and ovarian steroidogenesis, these results further substantiate a multifaceted role of adiponectin in the control of the reproductive axis, which might operate as endocrine integrator linking metabolism and gonadal function.


Assuntos
Adiponectina/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Adiponectina/genética , Adiponectina/metabolismo , Animais , Western Blotting , Hormônio Foliculoestimulante/farmacologia , Expressão Gênica/efeitos dos fármacos , Gonadotropinas/farmacologia , Imuno-Histoquímica , Células Intersticiais do Testículo/metabolismo , Masculino , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Testículo/metabolismo , Tiazolidinedionas/farmacologia
16.
Osteoarthritis Cartilage ; 16(9): 1101-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18261936

RESUMO

OBJECTIVE: Recent studies revealed a close connection between adipose tissue, adipokines and articular degenerative inflammatory diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA). The goal of this work was to investigate the activity of adiponectin in human and murine chondrocytes and to study its functional role in the modulation of nitric oxide synthase type II (NOS2). For completeness, interleukin (IL)-6, IL-1beta, matrix metalloproteinase (MMP)-2, MMP-3, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, prostaglandin E2 (PGE2), leukotriene B4 (LTB4), tumor necrosis factor alpha (TNF)-alpha and monocyte chemoattractant protein-1 (MCP-1) accumulation have been evaluated in adiponectin-stimulated chondrocytes cell culture supernatants. METHODS: Murine ATDC5 cell line, C28/I2, C20A4, TC28a2 human immortalized chondrocytes, and human cultured chondrocytes were used. Nitrite accumulation was determined by Griess reaction. Adiponectin receptors (AdipoRs) expression was evaluated by immunofluorescence microscopy and confirmed by reverse transcriptase-polymerase chain reaction. NOS2 expression was evaluated by Western blot analysis whereas cytokines, prostanoids and metalloproteinases production was evaluated by specific enzyme-linked immunosorbent assays. RESULTS: Human and murine chondrocytes express functional AdipoRs. Adiponectin induces NOS2. This effect is inhibited by aminoguanidine, dexamethasone and by a selective inhibitor of phosphatidylinositol 3-kinase. In addition, adiponectin is able to increase IL-6, MMP-3, MMP-9 and MCP-1 by murine cultured chondrocytes whereas it was unable to modulate TNF-alpha, IL-1beta, MMP-2, TIMP-1, PGE2 and LTB4 release. CONCLUSIONS: These results bind more closely the interactions between fat-derived adipokines and articular inflammatory diseases, and suggest that adiponectin is a novel key element in the maintenance of cartilage homeostasis which might be considered as a potential therapeutical target in joint degenerative diseases.


Assuntos
Tecido Adiposo Branco/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Citocinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Adiponectina/farmacologia , Tecido Adiposo Branco/fisiologia , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Cartilagem Articular/patologia , Condrócitos/patologia , Homeostase/fisiologia , Humanos , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Fator de Necrose Tumoral alfa/metabolismo
17.
J Endocrinol Invest ; 31(12): 1103-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19246978

RESUMO

Starvation exerts critical influence on somatotroph and leptin secretion. Fasting enhances GH levels in normal subjects, but not in GH hyposecretory states, while it always inhibits leptin secretion. We aimed to clarify the GH/IGF-I and metabolic response to short-term fasting in a GH hypersecretory state such as acromegaly. To this goal, in 8 active acromegalic (ACRO) and in 7 normal women (NS) we evaluated mean GH (mGHc), leptin (mLEPc), insulin (mINSc), glucose (mGLUc) concentrations as well as IGF-I, IGF binding protein (IGFBP)-3, IGFBP-1, and free fatty acid (FFA) levels before and after 36-h fasting. Before fasting, mGHc, IGF-I, mINSc, mGLUc, and FFA levels in ACRO were higher (p<0.01) than in NS. IGFBP-3, IGFBP-1, and mLEPc were similar in ACRO and in NS. Fasting clearly (p<0.02) increased mGHc in NS only. After 36-h fasting, significant IGF-I reduction was recorded in NS only (p<0.03). IGFBP-3 did not change both in ACRO and NS. IGFBP-1 significantly increased (p<0.05) after fasting in both groups but in ACRO were lower (p<0.03) than in NS. Fasting decreased (p<0.03) mLEPc, mGLUc, and mINSc in ACRO as well as in NS; mINSc and mGLUc after fasting in ACRO persisted higher (p<0.005) than in NS. FFA levels were increased by fasting in NS (p<0.02), but not in ACRO. This study shows that GH/IGF-I axis, glucose metabolism, and lypolisis but not leptin display some degree of refractoriness to short-term fasting in acromegaly. The lack of any GH response to fasting in acromegaly would likely reflect neuroendocrine alterations secondary to the GH hypersecretory state. On the other hand, the lack of somatotropic response and the peculiarly blunted metabolic reaction to short-term fasting would partially reflect the delayed adaptation of insulin resistance to starvation.


Assuntos
Acromegalia/metabolismo , Glicemia/metabolismo , Jejum/metabolismo , Hormônio do Crescimento Humano/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Lipólise/fisiologia , Acromegalia/sangue , Acromegalia/complicações , Adulto , Idoso , Estudos de Casos e Controles , Jejum/sangue , Feminino , Hormônio do Crescimento Humano/fisiologia , Humanos , Fator de Crescimento Insulin-Like I/fisiologia , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/complicações , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia , Adulto Jovem
18.
Acta Physiol (Oxf) ; 222(4): e13008, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29193738

RESUMO

AIM: To explore the cooperation of GLP-1 receptor and ß3-adrenergic receptor (ß3-AR)-mediated signalling in the control of fat mass/feeding behaviour by studying the effects of a combined therapy composed of the GLP-1R agonist liraglutide and the ß3-AR agonist CL316243. METHODS: The study included the analysis of key mechanisms regulating lipid/cholesterol metabolism, and thermogenesis in brown (BAT) and epididymal white (eWAT) adipose tissues, abdominal muscle and liver of male rats. RESULTS: CL316243 (1 mg kg-1 ) and liraglutide (100 µg kg-1 ) co-administration over 6 days potentiated an overall negative energy balance (reduction in food intake, body weight gain, fat/non-fat mass ratio, liver fat content, and circulating levels of non-essential fatty acids, triglycerides, very low-density lipoprotein-cholesterol and leptin). These effects were accompanied by increased plasma levels of insulin and IL6. We also observed increased gene expression of uncoupling proteins regulating thermogenesis in BAT/eWAT (Ucp1) and muscle (Ucp2/3). Expression of transcription factor and enzymes involved either in de novo lipogenesis (Chrebp, Acaca, Fasn, Scd1, Insig1, Srebp1) or in fatty acid ß-oxidation (Cpt1b) was enhanced in eWAT and/or muscle but decreased in BAT. Pparα and Pparγ, essentials in lipid flux/storage, were decreased in BAT/eWAT but increased in the muscle and liver. Cholesterol synthesis regulators (Insig2, Srebp2, Hmgcr) were particularly over-expressed in muscle. These GLP-1R/ß3-AR-induced metabolic effects were associated with the downregulation of cAMP-dependent signalling pathways (PKA/AKT/AMPK). CONCLUSION: Combined activation of GLP-1 and ß3-ARs potentiate changes in peripheral pathways regulating lipid/cholesterol metabolism in a tissue-specific manner that favours a switch in energy availability/expenditure and may be useful for obesity treatment.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Músculo Esquelético/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Liraglutida/farmacologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
Nat Commun ; 9(1): 4194, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305620

RESUMO

Puberty is regulated by epigenetic mechanisms and is highly sensitive to metabolic and nutritional cues. However, the epigenetic pathways mediating the effects of nutrition and obesity on pubertal timing are unknown. Here, we identify Sirtuin 1 (SIRT1), a fuel-sensing deacetylase, as a molecule that restrains female puberty via epigenetic repression of the puberty-activating gene, Kiss1. SIRT1 is expressed in hypothalamic Kiss1 neurons and suppresses Kiss1 expression. SIRT1 interacts with the Polycomb silencing complex to decrease Kiss1 promoter activity. As puberty approaches, SIRT1 is evicted from the Kiss1 promoter facilitating a repressive-to-permissive switch in chromatin landscape. Early-onset overnutrition accelerates these changes, enhances Kiss1 expression and advances puberty. In contrast, undernutrition raises SIRT1 levels, protracts Kiss1 repression and delays puberty. This delay is mimicked by central pharmacological activation of SIRT1 or SIRT1 overexpression, achieved via transgenesis or virogenetic targeting to the ARC. Our results identify SIRT1-mediated inhibition of Kiss1 as key epigenetic mechanism by which nutritional cues and obesity influence mammalian puberty.


Assuntos
Epigênese Genética , Kisspeptinas/genética , Fenômenos Fisiológicos da Nutrição , Obesidade/metabolismo , Maturidade Sexual , Sirtuína 1/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Cromatina/metabolismo , Feminino , Histonas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Estado Nutricional , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Fatores de Tempo
20.
Endocrinology ; 148(2): 813-23, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17110433

RESUMO

Neuromedin S (NMS), a 36 amino acid peptide structurally related to neuromedin U, was recently identified in rat brain as ligand for the G protein-coupled receptor FM4/TGR-1, also termed neuromedin U receptor type-2 (NMU2R). Central expression of NMS appears restricted to the suprachiasmatic nucleus, and NMS has been involved in the regulation of dark-light rhythms and suppression of food intake. Reproduction is known to be tightly regulated by metabolic and photoperiodic cues. Yet the potential contribution of NMS to the control of reproductive axis remains unexplored. We report herein analyses of hypothalamic expression of NMS and NMU2R genes, as well as LH responses to NMS, in different developmental and functional states of the female rat. Expression of NMS and NMU2R genes was detected at the hypothalamus along postnatal development, with significant fluctuations of their relative levels (maximum at prepubertal stage and adulthood). In adult females, hypothalamic expression of NMS (which was confined to suprachiasmatic nucleus) and NMU2R significantly varied during the estrous cycle (maximum at proestrus) and was lowered after ovariectomy and enhanced after progesterone supplementation. Central administration of NMS evoked modest LH secretory responses in pubertal and cyclic females at diestrus, whereas exaggerated LH secretory bursts were elicited by NMS at estrus and after short-term fasting. Conversely, NMS significantly decreased elevated LH concentrations of ovariectomized rats. In summary, we provide herein novel evidence for the ability of NMS to modulate LH secretion in the female rat. Moreover, hypothalamic expression of NMS and NMU2R genes appeared dependent on the functional state of the female reproductive axis. Our data are the first to disclose the potential implication of NMS in the regulation of gonadotropic axis, a function that may contribute to the integration of circadian rhythms, energy balance, and reproduction.


Assuntos
Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Proteínas de Membrana/metabolismo , Neuropeptídeos/fisiologia , Receptores de Neurotransmissores/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Diestro/metabolismo , Estro/metabolismo , Jejum/metabolismo , Feminino , Expressão Gênica , Hormônio Luteinizante/antagonistas & inibidores , Proteínas de Membrana/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ovariectomia , Proestro/metabolismo , Progesterona/farmacologia , Ratos , Ratos Wistar , Receptores de Neurotransmissores/genética , Maturidade Sexual , Núcleo Supraquiasmático/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA