Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(45): 16522-16530, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910605

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) over carbon-supported gold nanoparticles (AuNP) was investigated using a broad variety of (electro)analytical methods, including linear sweep voltammetry with a rotating disk electrode (LSV-RDE), sample-generation tip-collection mode of scanning electrochemical microscopy (SG/TC-SECM), as well as full cell tests with highly sensitive online gas chromatography (GC). In contrast to most other studies, this work focuses on the low-overpotential region (0 to -0.4 V vs RHE) where initial product formation is already detected and addresses micro- to macro-sized electrodes. The sub-10 nm AuNPs supported on three different carbon supports (CNTs and carbon blacks) were pretreated in H2/Ar to remove the stabilizer used during AuNP synthesis. LSV-RDE points toward different CO2RR mechanisms at the samples, additionally confirmed by the SG/TC-SECM and full cell tests with online GC. Besides H2 and CO, the AuNP supported on carbon nanotubes showed significant evolution of H2CO in contrast to the other two samples, which was additionally confirmed by accumulating the product during chronoamperometric RDE experiments followed by mass spectroscopic analysis. Surface analysis indicated a complete removal of residual thiolate stabilizer molecules exclusively at the AuNPs supported on carbon nanotubes, which may result in a change in the adsorption geometry or reaction mechanism at this sample. The results demonstrate the effectiveness of the combination of these multiple methods to investigate the CO2RR in the low-overpotential region.

2.
Inorg Chem ; 60(17): 13646-13657, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34492764

RESUMO

We report on the new Ruddlesden-Popper (RP) oxyfluoride La2NiO2.5F3 containing an unprecedented high amount of fluorine and Ni2+. This oxyfluoride was prepared by topochemical low-temperature fluorination of La2NiO4, which was obtained by a soft chemistry synthesis, with poly(vinylidene difluoride) (PVDF) as fluorinating agent. La2NiO2.5F3 is the first n = 1 RP compound crystallizing in the tetragonal space group P42/nnm (a = 5.7297(6) Å and c = 13.0106(2) Å). The crystal structure shows a unique tilting scheme of the NiO4F2 octahedra that has so far been only theoretically predicted. Combined neutron and X-ray powder diffraction experiments together with bond-valence-sum and DFT+U calculations reveal an unusual anion ordering with fluoride being located on the apical anion sites of the NiO4F2 octahedra. Excess fluorine ions were found to populate two of the four interstitial anion sites in an ordered fashion. A third interstitial anion position is occupied by oxygen ions while the fourth site remains unoccupied. This hitherto unobserved ordering scenario in RP oxyfluorides promotes a strong layerwise alternating tilting of the NiO4F2 octahedra. Magnetic measurements show strong antiferromagnetic interactions with a high Néel temperature of about 225 K and a pronounced ZFC/FC splitting most likely as the result of a small ferromagnetic moment arising from spin canting. The electronic structure was characterized by DFT and UV-vis spectroscopy, and a strong increase of Eg was found compared to La2NiO4 (3.4 eV vs 1.3 eV).

3.
Nanoscale Adv ; 4(23): 5154-5163, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36504735

RESUMO

Gold nanoparticles <10 nm in size are typically prepared using stabilizing agents, e.g. thiolates. Often standard recipes from literature are used to presumably remove these stabilisers to liberate the surface, e.g. for catalytic or electrocatalytic applications, however the success of these procedures is often not verified. In this work, thiolate-stabilised AuNPs of ca. 2 nm in size were synthesized and supported onto three different carbon supports, resulting in loadings from 15 to 25 wt% Au. These materials were post treated using three different methods in varying gas atmospheres to remove the stabilizing agent and to liberate the surface for electrochemical applications. Using thermogravimetry - mass spectroscopy (TG-MS), the amount of removed stabilizer was determined to be up to 95%. Identical location scanning transmission electron microscopy (il-(S)TEM) measurments revealed moderate particle growth but a stable support during the treatments, the latter was also confirmed by Raman spectroscopy. All treatments significantly improved the electrochemically accessible gold surface. In general, the results presented here point out the importance of quantitatively verifying the success of any catalyst post treatment with the aim of stabilizer removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA