Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 633(8029): 426-432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977017

RESUMO

Highly pathogenic H5N1 avian influenza (HPAI H5N1) viruses occasionally infect, but typically do not transmit, in mammals. In the spring of 2024, an unprecedented outbreak of HPAI H5N1 in bovine herds occurred in the USA, with virus spread within and between herds, infections in poultry and cats, and spillover into humans, collectively indicating an increased public health risk1-4. Here we characterize an HPAI H5N1 virus isolated from infected cow milk in mice and ferrets. Like other HPAI H5N1 viruses, the bovine H5N1 virus spread systemically, including to the mammary glands of both species, however, this tropism was also observed for an older HPAI H5N1 virus isolate. Bovine HPAI H5N1 virus bound to sialic acids expressed in human upper airways and inefficiently transmitted to exposed ferrets (one of four exposed ferrets seroconverted without virus detection). Bovine HPAI H5N1 virus thus possesses features that may facilitate infection and transmission in mammals.


Assuntos
Doenças dos Bovinos , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Virulência , Animais , Bovinos , Feminino , Humanos , Camundongos , Furões/virologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Influenza Humana/epidemiologia , Glândulas Mamárias Animais/virologia , Camundongos Endogâmicos BALB C , Leite/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Ácidos Siálicos/metabolismo , Tropismo Viral , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Estados Unidos/epidemiologia , Zoonoses Virais , Soroconversão , Máscaras Laríngeas/virologia
2.
Nature ; 634(8034): 669-676, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053575

RESUMO

The highly pathogenic avian influenza (HPAI) H5N1 virus clade 2.3.4.4b has caused the death of millions of domestic birds and thousands of wild birds in the USA since January 2022 (refs. 1-4). Throughout this outbreak, spillovers to mammals have been frequently documented5-12. Here we report spillover of the HPAI H5N1 virus to dairy cattle across several states in the USA. The affected cows displayed clinical signs encompassing decreased feed intake, altered faecal consistency, respiratory distress and decreased milk production with abnormal milk. Infectious virus and viral RNA were consistently detected in milk from affected cows. Viral distribution in tissues via immunohistochemistry and in situ hybridization revealed a distinct tropism of the virus for the epithelial cells lining the alveoli of the mammary gland in cows. Whole viral genome sequences recovered from dairy cows, birds, domestic cats and a raccoon from affected farms indicated multidirectional interspecies transmissions. Epidemiological and genomic data revealed efficient cow-to-cow transmission after apparently healthy cows from an affected farm were transported to a premise in a different state. These results demonstrate the transmission of the HPAI H5N1 clade 2.3.4.4b virus at a non-traditional interface, underscoring the ability of the virus to cross species barriers.


Assuntos
Doenças dos Bovinos , Indústria de Laticínios , Especificidade de Hospedeiro , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Animais , Gatos , Bovinos , Feminino , Aves/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/fisiopatologia , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , Fazendas , Genoma Viral/genética , Imuno-Histoquímica , Hibridização In Situ , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Glândulas Mamárias Animais/virologia , Leite/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Guaxinins/virologia , RNA Viral/análise , RNA Viral/genética , Estados Unidos/epidemiologia
4.
Appl Environ Microbiol ; 88(11): e0046622, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35612300

RESUMO

Avian paramyxoviruses (APMVs) (subfamily Avulavirinae) have been isolated from over 200 species of wild and domestic birds around the world. The International Committee on Taxonomy of Viruses (ICTV) currently defines 22 different APMV species, with Avian orthoavulavirus 1 (whose viruses are designated APMV-1) being the most frequently studied due to its economic burden to the poultry industry. Less is known about other APMV species, including limited knowledge on the genetic diversity in wild birds, and there is a paucity of public whole-genome sequences for APMV-2 to -22. The goal of this study was to use MinION sequencing to genetically characterize APMVs isolated from wild bird swab samples collected during 2016 to 2018 in the United States. Multiplexed MinION libraries were prepared using a random strand-switching approach using 37 egg-cultured, influenza-negative, hemagglutination-positive samples. Forty-one APMVs were detected, with 37 APMVs having complete polymerase coding sequences allowing for species identification using ICTV's current Paramyxoviridae phylogenetic methodology. APMV-1, -4, -6, and -8 viruses were classified, one putative novel species (Avian orthoavulavirus 23) was identified from viruses isolated in this study, two putative new APMV species (Avian metaavulavirus 24 and 27) were identified from viruses isolated in this study and from retrospective GenBank sequences, and two putative new APMV species (Avian metaavulavirus 25 and 26) were identified solely from retrospective GenBank sequences. Furthermore, coinfections of APMVs were identified in four samples. The potential limitations of the branch length being the only species identification criterion and the potential benefit of a group pairwise distance analysis are discussed. IMPORTANCE Most species of APMVs are understudied and/or underreported, and many species were incidentally identified from asymptomatic wild birds; however, the disease significance of APMVs in wild birds is not fully determined. The rapid rise in high-throughput sequencing coupled with avian influenza surveillance programs have identified 12 different APMV species in the last decade and have challenged the resolution of classical serological methods to identify new viral species. Currently, ICTV's only criterion for Paramyxoviridae species classification is the requirement of a branch length of >0.03 using a phylogenetic tree constructed from polymerase (L) amino acid sequences. The results from this study identify one new APMV species, propose four additional new APMV species, and highlight that the criterion may have insufficient resolution for APMV species demarcation and that refinement or expansion of this criterion may need to be established for Paramyxoviridae species identification.


Assuntos
Animais Selvagens , Infecções por Avulavirus , Avulavirus , Doenças das Aves , Animais , Animais Selvagens/virologia , Avulavirus/genética , Avulavirus/isolamento & purificação , Infecções por Avulavirus/epidemiologia , Infecções por Avulavirus/veterinária , Infecções por Avulavirus/virologia , Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Aves , Filogenia , Estudos Retrospectivos , Vigilância de Evento Sentinela/veterinária , Estados Unidos/epidemiologia
5.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33507145

RESUMO

Newcastle disease virus (NDV) is endemic in Bangladesh and is a major threat to commercial poultry operations. While complete fusion (F) genes are recommended for molecular characterization and classification of NDV isolates, heretofore, only partial F gene data have been available for Bangladeshi NDVs. To this end, we obtained the full-length F gene coding sequences of 11 representative NDVs isolated in Bangladesh between 2010 and 2017. In addition, one of the viruses (MK934289/chicken/Bangladesh/C161/2010) was used in an experimental infection of chickens to establish the viral pathotype and study gross and microscopic lesions. Phylogenetic analysis provided evidence that all studied Bangladeshi isolates belong to genotype XIII.2 of class II NDVs. Six of the viruses were isolated between 2010 and 2017 and grouped together with isolates from neighbouring India during 2013-2016. Another four Bangladeshi isolates (2010-2016) formed a separate monophyletic branch within XIII.2 and showed high nucleotide distance from the isolates from India and the other six Bangladeshi viruses within the sub-genotype; however, none of these groups fulfils all classification criteria to be named as a separate sub-genotype. The eleventh Bangladeshi virus studied here (C162) was genetically more distant from the remaining isolates. It out-grouped the viruses from sub-genotypes XIII.2.1 and XIII.2.2 and showed more than 9.5 % nucleotide distance from all genotype XIII sub-genotypes. This isolate may represent an NDV variant that is evolving independently from the other viruses in the region. The experimental infection in chickens revealed that the tested isolate (C161) is a velogenic viscerotropic virus. Massive haemorrhages, congestion and necrosis in different visceral organs, and lymphoid depletion in lymphoid tissues, typical for infection with velogenic NDV, were observed. Our findings demonstrate the endemic circulation of sub-genotype XIII.2 in Southcentral Asia and further genetic diversification of these viruses in Bangladesh and neighbouring India. This constant evolution of the viruses may lead to the establishment of new genetic groups in the region. Additional historical and prospective virus and surveillance data from the region and neighbouring countries will allow a more detailed epidemiological inference.


Assuntos
Variação Genética , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Animais , Ásia , Bangladesh/epidemiologia , Galinhas/virologia , Evolução Molecular , Genótipo , Índia , Pulmão/patologia , Doença de Newcastle/epidemiologia , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Virulência
6.
BMC Evol Biol ; 19(1): 108, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126244

RESUMO

BACKGROUND: Avian avulavirus (commonly known as avian paramyxovirus-1 or APMV-1) can cause disease of varying severity in both domestic and wild birds. Understanding how viruses move among hosts and geography would be useful for informing prevention and control efforts. A Bayesian statistical framework was employed to estimate the evolutionary history of 1602 complete fusion gene APMV-1 sequences collected from 1970 to 2016 in order to infer viral transmission between avian host orders and diffusion among geographic regions. Ancestral states were estimated with a non-reversible continuous-time Markov chain model, allowing transition rates between discrete states to be calculated. The evolutionary analyses were stratified by APMV-1 classes I (n = 198) and II (n = 1404), and only those sequences collected between 2006 and 2016 were allowed to contribute host and location information to the viral migration networks. RESULTS: While the current data was unable to assess impact of host domestication status on APMV-1 diffusion, these analyses supported the sharing of APMV-1 among divergent host taxa. The highest supported transition rate for both classes existed from domestic chickens to Anseriformes (class I:6.18 transitions/year, 95% highest posterior density (HPD) 0.31-20.02, Bayes factor (BF) = 367.2; class II:2.88 transitions/year, 95%HPD 1.9-4.06, BF = 34,582.9). Further, among class II viruses, domestic chickens also acted as a source for Columbiformes (BF = 34,582.9), other Galliformes (BF = 34,582.9), and Psittaciformes (BF = 34,582.9). Columbiformes was also a highly supported source to Anseriformes (BF = 322.0) and domestic chickens (BF = 402.6). Additionally, our results provide support for the diffusion of viruses among continents and regions, but no interhemispheric viral exchange between 2006 and 2016. Among class II viruses, the highest transition rates were estimated from South Asia to the Middle East (1.21 transitions/year; 95%HPD 0.36-2.45; BF = 67,107.8), from Europe to East Asia (1.17 transitions/year; 95%HPD 0.12-2.61; BF = 436.2) and from Europe to Africa (1.06 transitions/year, 95%HPD 0.07-2.51; BF = 169.3). CONCLUSIONS: While migration appears to occur infrequently, geographic movement may be important in determining viral diversification and population structure. In contrast, inter-order transmission of APMV-1 may occur readily, but most events are transient with few lineages persisting in novel hosts.


Assuntos
Interações Hospedeiro-Patógeno , Internacionalidade , Doença de Newcastle/transmissão , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Filogenia , África , Animais , Ásia , Viés , Galinhas/virologia , Europa (Continente) , Genótipo , Geografia , Vírus da Doença de Newcastle/genética , Estados Unidos
7.
Arch Virol ; 164(8): 2031-2047, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31123963

RESUMO

Newcastle disease virus (NDV) has a wide avian host range and a high degree of genetic variability, and virulent strains cause Newcastle disease (ND), a worldwide concern for poultry health. Although NDV has been studied in Nigeria, genetic information about the viruses involved in the endemicity of the disease and the transmission that likely occurs at the poultry-wildlife interface is still largely incomplete. Next-generation and Sanger sequencing was performed to provide complete (n = 73) and partial genomic sequence data (n = 38) for NDV isolates collected from domestic and wild birds in Nigeria during 2002-2015, including the first complete genome sequences of genotype IV and subgenotype VIh from the African continent. Phylogenetic analysis revealed that viruses of seven different genotypes circulated in that period, demonstrating high genetic diversity of NDV for a single country. In addition, a high degree of similarity between NDV isolates from domestic and wild birds was observed, suggesting that spillovers had occurred, including to three species that had not previously been shown to be susceptible to NDV infection. Furthermore, the first spillover of a mesogenic Komarov vaccine virus is documented, suggesting a previous spillover and evolution of this virus. The similarities between viruses from poultry and multiple bird species and the lack of evidence for host adaptation in codon usage suggest that transmission of NDV between poultry and non-poultry birds occurred recently. This is especially significant when considering that some viruses were isolated from species of conservation concern. The high diversity of NDV observed in both domestic and wild birds in Nigeria emphasizes the need for active surveillance and epidemiology of NDV in all bird species.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Animais , Variação Genética/genética , Genômica/métodos , Genótipo , Nigéria , Filogenia , Aves Domésticas/virologia , Sequenciamento Completo do Genoma/métodos
8.
Virus Genes ; 55(4): 502-512, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31089865

RESUMO

Highly virulent Newcastle disease virus (NDV) causes Newcastle disease (ND), which is a threat to poultry production worldwide. Effective disease management requires approaches to accurately determine sources of infection, which involves tracking of closely related viruses. Next-generation sequencing (NGS) has emerged as a research tool for thorough genetic characterization of infectious organisms. Previously formalin-fixed paraffin-embedded (FFPE) tissues have been used to conduct retrospective epidemiological studies of related but genetically distinct viruses. However, this study extends the applicability of NGS for complete genome analysis of viruses from FFPE tissues to track the evolution of closely related viruses. Total RNA was obtained from FFPE spleens, lungs, brains, and small intestines of chickens in 11 poultry flocks during disease outbreaks in Pakistan. The RNA was randomly sequenced on an Illumina MiSeq instrument and the raw data were analyzed using a custom data analysis pipeline that includes de novo assembly. Genomes of virulent NDV were detected in 10/11 birds: eight nearly complete (> 95% coverage of concatenated coding sequence) and two partial genomes. Phylogeny of the NDV complete genome coding sequences was compared to current methods of analysis based on the full and partial fusion genes and determined that the approach provided a better phylogenetic resolution. Two distinct lineages of sub-genotype VIIi NDV were identified to be simultaneously circulating in Pakistani poultry. Non-targeted NGS of total RNA from FFPE tissues coupled with de novo assembly provided a reliable, safe, and affordable method to conduct epidemiological and evolutionary studies to facilitate management of ND in Pakistan.


Assuntos
Galinhas , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Animais , Bases de Dados de Ácidos Nucleicos , Surtos de Doenças/veterinária , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/isolamento & purificação , Paquistão/epidemiologia , Filogenia , RNA Viral , Análise de Sequência de RNA , Proteínas Virais de Fusão/genética , Proteínas Estruturais Virais/análise
9.
Virol J ; 15(1): 179, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466441

RESUMO

BACKGROUND: Newcastle disease (ND) outbreaks are global challenges to the poultry industry. Effective management requires rapid identification and virulence prediction of the circulating Newcastle disease viruses (NDV), the causative agent of ND. However, these diagnostics are hindered by the genetic diversity and rapid evolution of NDVs. METHODS: An amplicon sequencing (AmpSeq) workflow for virulence and genotype prediction of NDV samples using a third-generation, real-time DNA sequencing platform is described here. 1D MinION sequencing of barcoded NDV amplicons was performed using 33 egg-grown isolates, (15 NDV genotypes), and 15 clinical swab samples collected from field outbreaks. Assembly-based data analysis was performed in a customized, Galaxy-based AmpSeq workflow. MinION-based results were compared to previously published sequences and to sequences obtained using a previously published Illumina MiSeq workflow. RESULTS: For all egg-grown isolates, NDV was detected and virulence and genotype were accurately predicted. For clinical samples, NDV was detected in ten of eleven NDV samples. Six of the clinical samples contained two mixed genotypes as determined by MiSeq, of which the MinION method detected both genotypes in four samples. Additionally, testing a dilution series of one NDV isolate resulted in NDV detection in a dilution as low as 101 50% egg infectious dose per milliliter. This was accomplished in as little as 7 min of sequencing time, with a 98.37% sequence identity compared to the expected consensus obtained by MiSeq. CONCLUSION: The depth of sequencing, fast sequencing capabilities, accuracy of the consensus sequences, and the low cost of multiplexing allowed for effective virulence prediction and genotype identification of NDVs currently circulating worldwide. The sensitivity of this protocol was preliminary tested using only one genotype. After more extensive evaluation of the sensitivity and specificity, this protocol will likely be applicable to the detection and characterization of NDV.


Assuntos
Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Animais , Código de Barras de DNA Taxonômico , Confiabilidade dos Dados , Variação Genética , Genoma Viral , Nanoporos , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/isolamento & purificação , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , RNA Viral/genética , Sensibilidade e Especificidade , Virulência
10.
Virol J ; 15(1): 9, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329546

RESUMO

BACKGROUND: Newcastle disease viruses (NDV) are highly contagious and cause disease in both wild birds and poultry. A pigeon-adapted variant of genotype VI NDV, often termed pigeon paramyxovirus 1, is commonly isolated from columbids in the United States and worldwide. Complete genomic characterization of these genotype VI viruses circulating in wild columbids in the United States is limited, and due to the genetic variability of the virus, failure of rapid diagnostic detection has been reported. Therefore, in this study, formalin-fixed paraffin-embedded (FFPE) samples were subjected to next-generation sequencing (NGS) to identify and characterize these circulating viruses, providing valuable genetic information. NGS enables multiple samples to be deep-sequenced in parallel. When used on FFPE samples, this methodology allows for retrospective studies of infectious organisms. METHODS: FFPE wild pigeon tissue samples (kidney, liver and spleen) from 10 mortality events in the U.S. between 2010 and 2016 were analyzed using NGS to detect and sequence NDV genomes from randomly amplified total RNA. Results were compared to the previously published immunohistochemistry (IHC) results conducted on the same samples. Additionally, phylogenetic analyses were conducted on the complete and partial fusion gene and complete genome coding sequences. RESULTS: Twenty-three out of 29 IHC-positive FFPE pigeon samples were identified as positive for NDV by NGS. Positive samples produced an average genome coverage of 99.6% and an average median depth of 199. A previously described sub-genotype (VIa) and a novel sub-genotype (VIn) of NDV were identified as the causative agent of 10 pigeon mortality events in the U.S. from 2010 to 2016. The distribution of these viruses from the North American lineages match the distribution of the Eurasian collared-doves and rock pigeons in the U.S. CONCLUSIONS: This work reports the first successful evolutionary study using deep sequencing of complete NDV genomes from FFPE samples of wild bird origin. There are at least two distinct U.S. lineages of genotype VI NDV maintained in wild pigeons that are continuously evolving independently from each other and have no evident epidemiological connections to viruses circulating abroad. These findings support the hypothesis that columbids are serving as reservoirs of virulent NDV in the U.S.


Assuntos
Columbidae/virologia , Evolução Molecular , Variação Genética , Genoma Viral , Genótipo , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Animais , Vírus da Doença de Newcastle/classificação , Filogenia , Vigilância em Saúde Pública , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
11.
Vet Pathol ; 55(5): 682-692, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29661124

RESUMO

Newcastle disease (ND), caused by virulent strains of Newcastle disease virus (NDV), is a devastating disease of poultry worldwide. The pathogenesis of ND in quail is poorly documented. To characterize the ability of virulent NDV strains to replicate and cause disease in quail, groups of 14 two-week-old Japanese quail ( Coturnix japonica) were experimentally inoculated with 108 EID50 (embryo infectious dose 50%) units of 1 of 4 virulent NDV strains: 2 isolated from quail ( N2, N23) and 2 from chickens ( Israel, Pakistan). At day 2 postinfection, noninfected quail (contact group) were added to each infection group to assess the efficacy of virus transmission. Tested NDV strains showed moderate pathogenicity, with highest mortality being 28% for the N2 strain and below 10% for the others. Two N2-inoculated birds showed neurological signs, such as head tremor and ataxia. Microscopic lesions were present in N2-, Israel-, and Pakistan-inoculated birds and consisted of nonsuppurative encephalitis. Contact birds showed no clinical signs or lesions. In both inoculated and contact birds, virus replication was moderate to minimal, respectively, as observed by immunohistochemistry in tissues and virus isolation from oropharyngeal and cloacal swabs. Strains originally isolated from quail resulted in higher numbers of birds shedding in the inoculation group; however, transmission appeared slightly more efficient with chicken-derived isolates. This study shows that virulent NDV strains have limited replicative potential and mild to moderate disease-inducing ability in Japanese quail.


Assuntos
Coturnix/virologia , Doença de Newcastle/patologia , Vírus da Doença de Newcastle , Animais , Encéfalo/patologia , Encéfalo/virologia , Doença de Newcastle/virologia , Eliminação de Partículas Virais
12.
Virol J ; 14(1): 43, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28253898

RESUMO

BACKGROUND: Avian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health. METHODS: In this study we sequenced the fusion gene from 58 APMV-1 isolates recovered from thirteen species of wild birds sampled throughout the USA during 2007-2014. We analyzed sequence information with previously reported data in order to assess contemporary genetic diversity and inter-taxa/inter-region exchange of APMV-1 in wild birds sampled in North America. RESULTS: Our results suggest that wild birds maintain previously undescribed genetic diversity of APMV-1; however, such diversity is unlikely to be pathogenic to domestic poultry. Phylogenetic analyses revealed that APMV-1 diversity detected in wild birds of North America has been found in birds belonging to numerous taxonomic host orders and within hosts inhabiting multiple geographic regions suggesting some level of viral exchange. However, our results also provide statistical support for associations between phylogenetic tree topology and host taxonomic order/region of sample origin which supports restricted exchange among taxa and geographical regions of North America for some APMV-1 sub-genotypes. CONCLUSIONS: We identify previously unrecognized genetic diversity of APMV-1 in wild birds in North America which is likely a function of continued viral evolution in reservoir hosts. We did not, however, find support for the emergence or maintenance of APMV-1 strains predicted to be pathogenic to poultry in wild birds of North America outside of the order Suliformes (i.e., cormorants). Furthermore, genetic evidence suggests that ecological drivers or other mechanisms may restrict viral exchange among taxa and regions of North America. Additional and more systematic sampling for APMV-1 in North America would likely provide further inference on viral dynamics for this infectious agent in wild bird populations.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/classificação , Avulavirus/isolamento & purificação , Aves/virologia , Variação Genética , Sorogrupo , Animais , Avulavirus/genética , Infecções por Avulavirus/virologia , Estados Unidos
13.
Virol J ; 14(1): 72, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388925

RESUMO

BACKGROUND: Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected variants and co-infecting agents. However, NGS is not widely used for small RNA viruses because of incorrectly perceived cost estimates and inefficient utilization of freely available bioinformatics tools. METHODS: In this study, we have utilized NGS-based random sequencing of total RNA combined with barcode multiplexing of libraries to quickly, effectively and simultaneously characterize the genomic sequences of multiple avian paramyxoviruses. Thirty libraries were prepared from diagnostic samples amplified in allantoic fluids and their total RNAs were sequenced in a single flow cell on an Illumina MiSeq instrument. After digital normalization, data were assembled using the MIRA assembler within a customized workflow on the Galaxy platform. RESULTS: Twenty-eight avian paramyxovirus 1 (APMV-1), one APMV-13, four avian influenza and two infectious bronchitis virus complete or nearly complete genome sequences were obtained from the single run. The 29 avian paramyxovirus genomes displayed 99.6% mean coverage based on bases with Phred quality scores of 30 or more. The lower and upper quartiles of sample median depth per position for those 29 samples were 2984 and 6894, respectively, indicating coverage across samples sufficient for deep variant analysis. Sample processing and library preparation took approximately 25-30 h, the sequencing run took 39 h, and processing through the Galaxy workflow took approximately 2-3 h. The cost of all steps, excluding labor, was estimated to be 106 USD per sample. CONCLUSIONS: This work describes an efficient multiplexing NGS approach, a detailed analysis workflow, and customized tools for the characterization of the genomes of RNA viruses. The combination of multiplexing NGS technology with the Galaxy workflow platform resulted in a fast, user-friendly, and cost-efficient protocol for the simultaneous characterization of multiple full-length viral genomes. Twenty-nine full-length or near-full-length APMV genomes with a high median depth were successfully sequenced out of 30 samples. The applied de novo assembly approach also allowed identification of mixed viral populations in some of the samples.


Assuntos
Genômica/economia , Genômica/métodos , Vírus de RNA/genética , Virologia/economia , Virologia/métodos , Animais , Aves , Biologia Computacional/economia , Biologia Computacional/métodos , Análise Custo-Benefício , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/métodos
14.
BMC Vet Res ; 13(1): 291, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28950869

RESUMO

BACKGROUND: The remarkable diversity and mobility of Newcastle disease viruses (NDV) includes virulent viruses of genotype VI. These viruses are often referred to as pigeon paramyxoviruses 1 because they are normally isolated and cause clinical disease in birds from the Columbidae family. Genotype VI viruses occasionally infect, and may also cause clinical disease in poultry. Thus, the evolution, current spread and detection of these viruses are relevant to avian health. RESULTS: Here, we describe the isolation and genomic characterization of six Egyptian (2015), four Pakistani (2015), and two Ukrainian (2007, 2013) recent pigeon-derived NDV isolates of sub-genotype VIg. These viruses are closely related to isolates from Kazakhstan, Nigeria and Russia. In addition, eight genetically related NDV isolates from Pakistan (2014-2016) that define a new sub-genotype (VIm) are described. All of these viruses, and the ancestral Bulgarian (n = 2) and South Korean (n = 2) viruses described here, have predicted virulent cleavage sites of the fusion protein, and those selected for further characterization have intracerebral pathogenicity index assay values characteristic of NDV of genotype VI (1.31 to 1.48). A validated matrix gene real-time RT-PCR (rRT-PCR) NDV test detect all tested isolates. However, the validated rRT-PCR test that is normally used to identify the virulent fusion gene fails to detect the Egyptian and Ukrainian viruses due to mismatches in primers and probe. A new rapid rRT-PCR test to determine the presence of virulent cleavage sites for viruses from sub-genotypes VIg was developed and evaluated on these and other viruses. CONCLUSIONS: We describe the almost simultaneous circulation and continuous evolution of genotype VI Newcastle disease viruses in distant locations, suggesting epidemiological connections among three continents. As pigeons are not migratory, this study suggests the need to understand the possible role of human activity in the dispersal of these viruses. Complete genomic characterization identified previously unrecognized genetic diversity that contributes to diagnostic failure and will facilitate future evolutionary studies. These results highlight the importance of conducting active surveillance on pigeons worldwide and the need to update existent rapid diagnostic protocols to detect emerging viral variants and help manage the disease in affected regions.


Assuntos
Evolução Biológica , Columbidae/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , África , Animais , Ásia , Europa Oriental , Genoma Viral , Genótipo , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Proteínas Virais de Fusão/genética , Virulência , Sequenciamento Completo do Genoma
15.
J Clin Microbiol ; 54(5): 1228-35, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26888902

RESUMO

Virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), a devastating disease of poultry and wild birds. Phylogenetic analyses clearly distinguish historical isolates (obtained prior to 1960) from currently circulating viruses of class II genotypes V, VI, VII, and XII through XVIII. Here, partial and complete genomic sequences of recent virulent isolates of genotypes II and IX from China, Egypt, and India were found to be nearly identical to those of historical viruses isolated in the 1940s. Phylogenetic analysis, nucleotide distances, and rates of change demonstrate that these recent isolates have not evolved significantly from the most closely related ancestors from the 1940s. The low rates of change for these virulent viruses (7.05 × 10(-5) and 2.05 × 10(-5) per year, respectively) and the minimal genetic distances existing between these and historical viruses (0.3 to 1.2%) of the same genotypes indicate an unnatural origin. As with any other RNA virus, Newcastle disease virus is expected to evolve naturally; thus, these findings suggest that some recent field isolates should be excluded from evolutionary studies. Furthermore, phylogenetic analyses show that these recent virulent isolates are more closely related to virulent strains isolated during the 1940s, which have been and continue to be used in laboratory and experimental challenge studies. Since the preservation of viable viruses in the environment for over 6 decades is highly unlikely, it is possible that the source of some of the recent virulent viruses isolated from poultry and wild birds might be laboratory viruses.


Assuntos
Surtos de Doenças , Variação Genética , Genótipo , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Aves , China , Egito , Genoma Viral , Índia , Epidemiologia Molecular , Vírus da Doença de Newcastle/genética , Filogenia , Aves Domésticas , Análise de Sequência de DNA
16.
Arch Virol ; 161(12): 3345-3353, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27581808

RESUMO

Here, we report the circulation of highly related virulent Newcastle disease viruses (NDV) in Bulgaria and Ukraine from 2002 until 2013. All of these NDV isolates have the same virulence-associated cleavage site ("113RQKR↓F117"), and selected ones have intracerebral pathogenicity index values ranging from 1.61 to 1.96. These isolates are most closely related to viruses circulating in Eastern Europe, followed by viruses isolated in Asia during the same period of time. Interestingly, the majority of the viruses were isolated from backyard poultry, suggesting the possibility of a "domestic" or "urban" cycle of maintenance. The molecular characterization of the nucleotide sequence of the complete fusion protein gene of the studied viruses suggests continued circulation of virulent NDV of sub-genotype VIId in Eastern Europe, with occasional introductions from Asia. Furthermore, the high level of genetic similarity among those isolates suggests that the NDV isolates of sub-genotype VIId from Bulgaria and Ukraine may have been part of a broader epizootic process in Eastern Europe rather than separate introductions from Asia or Africa. The continuous monitoring of backyard poultry flocks for the presence of circulating virulent NDV strains will allow early identification of Newcastle disease outbreaks.


Assuntos
Galinhas/virologia , Genótipo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/virologia , Animais , Bulgária/epidemiologia , Análise por Conglomerados , Epidemiologia Molecular , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Doenças das Aves Domésticas/epidemiologia , Análise de Sequência de DNA , Homologia de Sequência , Ucrânia/epidemiologia , Proteínas Virais de Fusão/genética
17.
Am J Vet Res ; 85(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422620

RESUMO

OBJECTIVE: To determine the efficacy of primary or booster intranasal vaccination of beef steers on clinical protection and pathogen detection following simultaneous challenge with bovine respiratory syncytial virus and bovine herpes virus 1. METHODS: 30 beef steers were randomly allocated to 3 different treatment groups starting at 2 months of age. Group A (n = 10) was administered a single dose of a parenteral modified-live vaccine and was moved to a separate pasture. Groups B (n = 10) and C (10) remained unvaccinated. At 6 months of age, all steers were weaned and transported. Subsequently, groups A and B received a single dose of an intranasal modified-live vaccine vaccine while group C remained unvaccinated. Group C was housed separately until challenge. Two days following vaccination, all steers were challenged with bovine respiratory syncytial virus and bovine herpes virus 1 and housed in a single pen. Clinical and antibody response outcomes and the presence of nasal pathogens were evaluated. RESULTS: The odds of clinical disease were lower in group A compared with group C on day 7 postchallenge; however, antibody responses and pathogen detection were not significantly different between groups before and following viral challenge. All calves remained negative for Histophilus somni and Mycoplasma bovis; however, significantly greater loads of Mannheimia haemolytica and Pasteurella multocida were detected on day 7 postchallenge compared with day -2 prechallenge. CLINICAL RELEVANCE: Intranasal booster vaccination of beef steers at 6 months of age reduced clinical disease early after viral challenge. Weaning, transport, and viral infection promoted increased detection rates of M haemolytica and P multocida regardless of vaccination status.


Assuntos
Administração Intranasal , Coinfecção , Herpesvirus Bovino 1 , Imunização Secundária , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Bovino , Animais , Bovinos , Herpesvirus Bovino 1/imunologia , Masculino , Administração Intranasal/veterinária , Vírus Sincicial Respiratório Bovino/imunologia , Imunização Secundária/veterinária , Coinfecção/veterinária , Coinfecção/prevenção & controle , Coinfecção/microbiologia , Infecções por Vírus Respiratório Sincicial/veterinária , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Rinotraqueíte Infecciosa Bovina/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Derrame de Bactérias , Anticorpos Antivirais/sangue , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/prevenção & controle , Distribuição Aleatória , Vacinação/veterinária
18.
Microbiol Resour Announc ; 12(10): e0040523, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37750692

RESUMO

We report the complete genome sequences of seven virulent Newcastle disease viruses (NDVs) that were isolated from chickens from live bird markets in the Arusha, Iringa, Mbeya, and Tanga regions of Tanzania in 2012. Phylogenetic analysis revealed that all isolates belong to sub-genotype XIII.1.1.

19.
Front Vet Sci ; 10: 1026296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742982

RESUMO

Newcastle disease virus (NDV) infects a wide range of bird species worldwide and is of importance to the poultry industry. Although certain virus genotypes are clearly associated with wild bird species, the role of those species in the movement of viruses and the migratory routes they follow is still unclear. In this study, we performed a phylogenetic analysis of nineteen NDV sequences that were identified among 21,924 samples collected from wild and synanthropic birds from different regions of Ukraine from 2006 to 2015 and compared them with isolates from other continents. In synanthropic birds, NDV strains of genotype II, VI, VII, and XXI of class II were detected. The fusion gene sequences of these strains were similar to strains detected in birds from different geographical regions of Europe and Asia. However, it is noteworthy to mention the isolation of vaccine viruses from synanthropic birds, suggesting the possibility of their role in viral transmission from vaccinated poultry to wild birds, which may lead to the further spreading of vaccine viruses into other regions during wild bird migration. Moreover, here we present the first publicly available complete NDV F gene from a crow (genus Corvus). Additionally, our phylogenetic results indicated a possible connection of Ukrainian NDV isolates with genotype XXI strains circulating in Kazakhstan. Among strains from wild birds, NDVs of genotype 1 of class I and genotype I of class II were detected. The phylogenetic analysis highlighted the possible exchange of these NDV strains between wild waterfowl from the Azov-Black Sea region of Ukraine and waterfowl from different continents, including Europe, Asia, and Africa.

20.
Viruses ; 14(12)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36560631

RESUMO

Newcastle disease (ND) is endemic in poultry in Bangladesh. We performed genotypic and pathotypic characterization of four ND virus (NDV) isolates from recent outbreaks in broiler chickens in Bangladesh during the period of 2020-2021. Phylogenetic analysis based on the complete fusion protein gene coding sequences classified the viruses into NDV class II genotype VII.2 together with viruses from Indonesia isolated between 2014 and 2021 and a single 2020 Indian isolate. Pathogenicity testing using the intracerebral pathogenicity index in day-old chickens and mean embryo death time in embryonating chicken eggs revealed that the Bangladeshi isolates are velogenic. Inoculation of 35-day-old chickens with two NDV isolates (LT67 and N5) resulted in 100% morbidity by 3 days post inoculation (DPI), and all birds succumbed to infection by 7 DPI. Massive hemorrhages, congestion and necrotic lesions were observed in different visceral organs, which were typical for infection with a velogenic viscerotropic pathotype of NDV. At microscopic examination, tracheitis, severe pneumonia, focal proventriculitis, transmural enteritis, focal myocarditis, severe congestion and necrosis in kidneys, and lymphoid depletion in lymphoid tissues were found. Our study reports the first outbreak of the panzootic genotype VII.2 NDV in poultry in Bangladesh and documents a possible recent re-introduction of this NDV genotype from Southeast or East Asia. This study further provides viral distribution and epidemiological data that can facilitate the effective control of NDV.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Animais , Vírus da Doença de Newcastle , Galinhas , Filogenia , Bangladesh/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Genótipo , Surtos de Doenças/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA