Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32750850

RESUMO

Shewanella species are well-known for their extracellular electron transfer (EET) capacity, by which these microorganisms can transfer the electrons from intracellular environment to extracellular space for the reduction of the extracellular insoluble electron acceptors. Using a time-stamped data for the paired protein-mRNA, we investigate the impact of differential translation on the EET process of Shewanella oneidensis MR-1. Firstly, differentially translated proteins when O2 levels are switched from high-O2 to low-O2 are identified by using a soft clustering method, 629 up-regulated translated proteins and 767 down-regulated translated proteins are considered to reflect the changes from inactivated to activated EET process. Then, we showed that the degrees of connectivity of differentially translated proteins were significantly larger than those of non-differentially translated proteins, and thereby these differentially translated proteins will be more important in the protein networks. After that, we networked these differentially translated proteins to construct the differentially translated sub-networks, and discussed the most important proteins that are involved in the EET process with the help of centralization analysis of these differentially translated networks. Furthermore, we also studied the differentially translated operonic genes. Taking together, this work searches the key proteins that potentially activated the EET process from a translational efficiency viewpoint.


Assuntos
Elétrons , Shewanella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons/genética , Shewanella/genética
2.
Braz J Microbiol ; 40(2): 411-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031381

RESUMO

The purpose of this work was to study the giant strong component (GSC) of B. thuringiensis metabolic network by structural and functional analysis. Based on so-called "bow tie" structure, we extracted and studied GSC with its functional significance. Global structural properties such as degree distribution and average path length were computed and indicated that the GSC is also a small-world and scale-free network. Furthermore, the GSC was decomposed and functional significant for metabolism of these divisions were investigated by comparing to KEGG metabolic pathways.

3.
Rev Sci Instrum ; 85(10): 103907, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362416

RESUMO

A supercooled liquid extraction method and apparatus for micro and nanoscale metallic glassy fiber preparation was developed. Using the fiber fabrication equipment, micro to nanoscale metallic glassy fibers with diameter ranging from 70 nm to 300 µm can be obtained by wire drawing in the supercooled liquid region of metallic glasses via superplastic deformation. The obtained metallic glassy fibers possess precisely designed and controlled sizes, high structural uniformity and high degree of surface smoothness.

4.
Artigo em Inglês | VETINDEX | ID: vti-444402

RESUMO

The purpose of this work was to study the giant strong component (GSC) of B. thuringiensis metabolic network by structural and functional analysis. Based on so-called "bow tie" structure, we extracted and studied GSC with its functional significance. Global structural properties such as degree distribution and average path length were computed and indicated that the GSC is also a small-world and scale-free network. Furthermore, the GSC was decomposed and functional significant for metabolism of these divisions were investigated by comparing to KEGG metabolic pathways.


O objetivo deste trabalho foi realizar uma análise estrutural e funcional do GSC (Giant Strong Component) da rede metabólica de Bacillus thurigiensis. Baseando-se na estrutura bow-tie, o GSC foi extraído e analisado quanto ao sue significado funcional. Propriedades estruturais globais tais como grau de distribuição e tamanho médio da via metabólica foram mensuradas, concluindo-se que o GSC é também uma rede small world e scalefree. Além disso, a rede GSC foi decomposta e as divisões com significância funcional no metabolismo foram comparadas às vias metabólicas KEGG.

5.
Braz. j. microbiol ; 40(2): 411-416, Apr.-June 2009. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-520231

RESUMO

The purpose of this work was to study the giant strong component (GSC) of B. thuringiensis metabolic network by structural and functional analysis. Based on so-called "bow tie" structure, we extracted and studied GSC with its functional significance. Global structural properties such as degree distribution and average path length were computed and indicated that the GSC is also a small-world and scale-free network. Furthermore, the GSC was decomposed and functional significant for metabolism of these divisions were investigated by comparing to KEGG metabolic pathways.


O objetivo deste trabalho foi realizar uma análise estrutural e funcional do GSC (Giant Strong Component) da rede metabólica de Bacillus thurigiensis. Baseando-se na estrutura bow-tie, o GSC foi extraído e analisado quanto ao sue significado funcional. Propriedades estruturais globais tais como grau de distribuição e tamanho médio da via metabólica foram mensuradas, concluindo-se que o GSC é também uma rede small world e scalefree. Além disso, a rede GSC foi decomposta e as divisões com significância funcional no metabolismo foram comparadas às vias metabólicas KEGG.


Assuntos
Bacillus thuringiensis/metabolismo , Metabolismo , Métodos , Métodos
6.
Biopolymers ; 11(10): 2109-24, 1972.
Artigo em Inglês | MEDLINE | ID: mdl-5078392
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA