Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell ; 168(1-2): 101-110.e10, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086082

RESUMO

ATP-sensitive potassium channels (KATP) couple intracellular ATP levels with membrane excitability. These channels play crucial roles in many essential physiological processes and have been implicated extensively in a spectrum of metabolic diseases and disorders. To gain insight into the mechanism of KATP, we elucidated the structure of a hetero-octameric pancreatic KATP channel in complex with a non-competitive inhibitor glibenclamide by single-particle cryoelectron microscopy to 5.6-Å resolution. The structure shows that four SUR1 regulatory subunits locate peripherally and dock onto the central Kir6.2 channel tetramer through the SUR1 TMD0-L0 fragment. Glibenclamide-bound SUR1 uses TMD0-L0 fragment to stabilize Kir6.2 channel in a closed conformation. In another structural population, a putative co-purified phosphatidylinositol 4,5-bisphosphate (PIP2) molecule uncouples Kir6.2 from glibenclamide-bound SUR1. These structural observations suggest a molecular mechanism for KATP regulation by anti-diabetic sulfonylurea drugs, intracellular adenosine nucleotide concentrations, and PIP2 lipid.


Assuntos
Canais KATP/química , Canais KATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Hidrolases/química , Hidrolases/metabolismo , Mamíferos/metabolismo , Mesocricetus , Camundongos , Modelos Moleculares , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/metabolismo
2.
EMBO J ; 43(6): 1089-1109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360992

RESUMO

Cullin-RING E3 ubiquitin ligase (CRL) family members play critical roles in numerous biological processes and diseases including cancer and Alzheimer's disease. Oligomerization of CRLs has been reported to be crucial for the regulation of their activities. However, the structural basis for its regulation and mechanism of its oligomerization are not fully known. Here, we present cryo-EM structures of oligomeric CRL2FEM1B in its unneddylated state, neddylated state in complex with BEX2 as well as neddylated state in complex with FNIP1/FLCN. These structures reveal that asymmetric dimerization of N8-CRL2FEM1B is critical for the ubiquitylation of BEX2 while FNIP1/FLCN is ubiquitylated by monomeric CRL2FEM1B. Our data present an example of the asymmetric homo-dimerization of CRL. Taken together, this study sheds light on the ubiquitylation strategy of oligomeric CRL2FEM1B according to substrates with different scales.


Assuntos
Ubiquitina-Proteína Ligases , Humanos , Proteínas Culina/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Nucleic Acids Res ; 52(5): 2174-2187, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38348869

RESUMO

Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information.


Assuntos
Hibridização de Ácido Nucleico , Oligonucleotídeos , DNA/química , Cinética , Oligonucleotídeos/genética , Oligonucleotídeos/química , RNA/química , Termodinâmica
4.
Nucleic Acids Res ; 51(13): 6528-6539, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37247941

RESUMO

The nonenzymatic copying of RNA is thought to have been necessary for the transition between prebiotic chemistry and ribozyme-catalyzed RNA replication in the RNA World. We have previously shown that a potentially prebiotic nucleotide activation pathway based on phospho-Passerini chemistry can lead to the efficient synthesis of 2-aminoimidazole activated mononucleotides when carried out under freeze-thaw cycling conditions. Such activated nucleotides react with each other to form 5'-5' 2-aminoimidazolium bridged dinucleotides, enabling template-directed primer extension to occur within the same reaction mixture. However, mononucleotides linked to oligonucleotides by a 5'-5' 2-aminoimidazolium bridge are superior substrates for nonenzymatic primer extension; their higher intrinsic reactivity and their higher template affinity enable faster template copying at lower substrate concentrations. Here we show that eutectic phase phospho-Passerini chemistry efficiently activates short oligonucleotides and promotes the formation of monomer-bridged-oligonucleotide species during freeze-thaw cycles. We then demonstrate that in-situ generated monomer-bridged-oligonucleotides lead to efficient nonenzymatic template copying in the same reaction mixture. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.


The absence of a prebiotically plausible pathway for the efficient nonenzymatic copying of RNAs remains a major obstacle towards constructing self-replicating protocells that emulate early lifeforms. We demonstrate the activation of short oligonucleotides and the subsequent formation of monomer-bridged-oligonucleotide species, leading to efficient nonenzymatic template copying in the same reaction mixture. Our findings suggest that in-situ activated mixtures of mono- and oligo-nucleotides would significantly outperform mononucleotides in driving the copying of arbitrary RNA sequences. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.


Assuntos
RNA Catalítico , RNA , RNA/genética , Oligonucleotídeos , RNA Catalítico/metabolismo , Nucleotídeos , Fosfatos de Dinucleosídeos
5.
Proc Natl Acad Sci U S A ; 119(17): e2116429119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446612

RESUMO

Nonenzymatic template-directed RNA copying using chemically activated nucleotides is thought to have played a key role in the emergence of genetic information on the early Earth. A longstanding question concerns the number and nature of different environments that might have been necessary to enable all of the steps from nucleotide synthesis to RNA copying. Here we explore three sequential steps from this overall pathway: nucleotide activation, synthesis of imidazolium-bridged dinucleotides, and template-directed RNA copying. We find that all three steps can take place in one reaction mixture undergoing multiple freeze-thaw cycles. Recent experiments have demonstrated a potentially prebiotic methyl isocyanide-based nucleotide activation chemistry. However, the original version of this approach is incompatible with nonenzymatic RNA copying because the high required concentration of the imidazole activating group prevents the accumulation of the essential imidazolium-bridged dinucleotide. Here we report that ice eutectic phase conditions facilitate not only the methyl isocyanide-based activation of ribonucleotide 5'-monophosphates with stoichiometric 2-aminoimidazole, but also the subsequent conversion of these activated mononucleotides into imidazolium-bridged dinucleotides. Furthermore, this one-pot approach is compatible with template-directed RNA copying in the same reaction mixture. Our results suggest that the simple and common environmental fluctuation of freeze-thaw cycles could have played an important role in prebiotic nucleotide activation and nonenzymatic RNA copying.


Assuntos
Nucleotídeos , RNA , Nucleotídeos/química , Nucleotídeos/genética , Polimerização , RNA/química , RNA/genética
6.
J Am Chem Soc ; 146(23): 15897-15907, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818863

RESUMO

In the RNA World before the emergence of an RNA polymerase, nonenzymatic template copying would have been essential for the transmission of genetic information. However, the products of chemical copying with the canonical nucleotides (A, U, C, and G) are heavily biased toward the incorporation of G and C, which form a more stable base pair than A and U. We therefore asked whether replacing adenine (A) with diaminopurine (D) might lead to more efficient and less biased nonenzymatic template copying by making a stronger version of the A:U pair. As expected, primer extension substrates containing D bound to U in the template more tightly than substrates containing A. However, primer extension with D exhibited elevated reaction rates on a C template, leading to concerns about fidelity. Our crystallographic studies revealed the nature of the D:C mismatch by showing that D can form a wobble-type base pair with C. We then asked whether competition with G would decrease the mismatched primer extension. We performed nonenzymatic primer extension with all four activated nucleotides on randomized RNA templates containing all four letters and used deep sequencing to analyze the products. We found that the DUCG genetic system exhibited a more even product distribution and a lower mismatch frequency than the canonical AUCG system. Furthermore, primer extension is greatly reduced following all mismatches, including the D:C mismatch. Our study suggests that D deserves further attention for its possible role in the RNA World and as a potentially useful component of artificial nonenzymatic RNA replication systems.


Assuntos
2-Aminopurina , RNA , RNA/química , 2-Aminopurina/química , 2-Aminopurina/análogos & derivados , Pareamento de Bases , Moldes Genéticos , Conformação de Ácido Nucleico , Modelos Moleculares
7.
J Am Chem Soc ; 146(6): 3861-3871, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293747

RESUMO

2-Thiouridine (s2U) is a nucleobase modification that confers enhanced efficiency and fidelity both on modern tRNA codon translation and on nonenzymatic and ribozyme-catalyzed RNA copying. We have discovered an unusual base pair between two 2-thiouridines that stabilizes an RNA duplex to a degree that is comparable to that of a native A:U base pair. High-resolution crystal structures indicate similar base-pairing geometry and stacking interactions in duplexes containing s2U:s2U compared to those with U:U pairs. Notably, the C═O···H-N hydrogen bond in the U:U pair is replaced with a C═S···H-N hydrogen bond in the s2U:s2U base pair. The thermodynamic stability of the s2U:s2U base pair suggested that this self-pairing might lead to an increased error frequency during nonenzymatic RNA copying. However, competition experiments show that s2U:s2U base-pairing induces only a low level of misincorporation during nonenzymatic RNA template copying because the correct A:s2U base pair outcompetes the slightly weaker s2U:s2U base pair. In addition, even if an s2U is incorrectly incorporated, the addition of the next base is greatly hindered. This strong stalling effect would further increase the effective fidelity of nonenzymatic RNA copying with s2U. Our findings suggest that s2U may enhance the rate and extent of nonenzymatic copying with only a minimal cost in fidelity.


Assuntos
RNA Catalítico , RNA , Tiouridina/análogos & derivados , RNA/química , Pareamento de Bases , Tiouridina/química , RNA Catalítico/química , Conformação de Ácido Nucleico
8.
Environ Sci Technol ; 58(22): 9570-9581, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781138

RESUMO

The increasing level of O3 pollution in China significantly exacerbates the long-term O3 health damage, and an optimized health-oriented strategy for NOx and VOCs emission abatement is needed. Here, we developed an integrated evaluation and optimization system for the O3 control strategy by merging a response surface model for the O3-related mortality and an optimization module. Applying this system to the Yangtze River Delta (YRD), we evaluated driving factors for mortality changes from 2013 to 2017, quantified spatial and temporal O3-related mortality responses to precursor emission abatement, and optimized a health-oriented control strategy. Results indicate that insufficient NOx emission abatement combined with deficient VOCs control from 2013 to 2017 aggravated O3-related mortality, particularly during spring and autumn. Northern YRD should promote VOCs control due to higher VOC-limited characteristics, whereas fastening NOx emission abatement is more favorable in southern YRD. Moreover, promotion of NOx mitigation in late spring and summer and facilitating VOCs control in spring and autumn could further reduce O3-related mortality by nearly 10% compared to the control strategy without seasonal differences. These findings highlight that a spatially and temporally differentiated NOx and VOCs emission control strategy could gain more O3-related health benefits, offering valuable insights to regions with severe ozone pollution all over the world.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , China , Poluentes Atmosféricos , Humanos , Óxidos de Nitrogênio
9.
Environ Sci Technol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973717

RESUMO

Reducing air pollutants and CO2 emissions from energy utilization is crucial for achieving the dual objectives of clean air and carbon neutrality in China. Thus, an optimized health-oriented strategy is urgently needed. Herein, by coupling a CO2 and air pollutants emission inventory with response surface models for PM2.5-associated mortality, we shed light on the effectiveness of protecting human health and co-CO2 benefit from reducing fuel-related emissions and generate a health-oriented strategy for the Yangtze River Delta (YRD). Results reveal that oil consumption is the primary contributor to fuel-related PM2.5 pollution and premature deaths in the YRD. Significantly, curtailing fuel consumption in transportation is the most effective measure to alleviate the fuel-related PM2.5 health impact, which also has the greatest cobenefits for CO2 emission reduction on a regional scale. Reducing fuel consumption will achieve substantial health improvements especially in eastern YRD, with nonroad vehicle emission reductions being particularly impactful for health protection, while on-road vehicles present the greatest potential for CO2 reductions. Scenario analysis confirms the importance of mitigating oil consumption in the transportation sector in addressing PM2.5 pollution and climate change.

10.
Nucleic Acids Res ; 50(1): 35-45, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893864

RESUMO

The identification of nonenzymatic pathways for nucleic acid replication is a key challenge in understanding the origin of life. We have previously shown that nonenzymatic RNA primer extension using 2-aminoimidazole (2AI) activated nucleotides occurs primarily through an imidazolium-bridged dinucleotide intermediate. The reactive nature and preorganized structure of the intermediate increase the efficiency of primer extension but remain insufficient to drive extensive copying of RNA templates containing all four canonical nucleotides. To understand the factors that limit RNA copying, we synthesized all ten 2AI-bridged dinucleotide intermediates and measured the kinetics of primer extension in a model system. The affinities of the ten dinucleotides for the primer/template/helper complexes vary by over 7,000-fold, consistent with nearest neighbor energetic predictions. Surprisingly, the reaction rates at saturating intermediate concentrations still vary by over 15-fold, with the most weakly binding dinucleotides exhibiting a lower maximal reaction rate. Certain noncanonical nucleotides can decrease sequence dependent differences in affinity and primer extension rate, while monomers bridged to short oligonucleotides exhibit enhanced binding and reaction rates. We suggest that more uniform binding and reactivity of imidazolium-bridged intermediates may lead to the ability to copy arbitrary template sequences under prebiotically plausible conditions.


Assuntos
RNA/síntese química , Imidazóis/química , Cinética , RNA/química , Termodinâmica
11.
J Am Chem Soc ; 145(13): 7504-7515, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963403

RESUMO

The virtual circular genome (VCG) model was proposed as a means of going beyond template copying to indefinite cycles of nonenzymatic RNA replication during the origin of life. In the VCG model, the protocellular genome is a collection of short oligonucleotides that map to both strands of a virtual circular sequence. Replication is driven by templated nonenzymatic primer extensions on a subset of kinetically trapped partially base-paired configurations, followed by the shuffling of these configurations to enable continued oligonucleotide elongation. Here, we describe initial experimental studies of the feasibility of the VCG model for replication. We designed a small 12-nucleotide model VCG and synthesized all 247 oligonucleotides of lengths 2 to 12 corresponding to this genome. We experimentally monitored the fate of individual labeled primers in the pool of VCG oligonucleotides following the addition of activated nucleotides and investigated the effect of factors such as oligonucleotide length, concentration, composition, and temperature on the extent of primer extension. We observe a surprisingly prolonged equilibration process in the VCG system that enables a considerable extent of reaction. We find that environmental fluctuations would be essential for continuous templated extension of the entire VCG system since the shortest oligonucleotides can only bind to templates at low temperatures, while the longest oligonucleotides require high-temperature spikes to escape from inactive configurations. Finally, we demonstrate that primer extension is significantly enhanced when the mix of VCG oligonucleotides is preactivated. We discuss the necessity of ongoing in situ activation chemistry for continuous and accurate VCG replication.


Assuntos
Replicação do RNA , RNA , Primers do DNA , Nucleotídeos/química , Oligonucleotídeos/química , RNA/química , Moldes Genéticos , Genoma
12.
RNA ; 27(1): 1-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028653

RESUMO

We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.


Assuntos
Genoma , Modelos Genéticos , Origem da Vida , RNA Catalítico/genética , RNA/genética , Células Artificiais , DNA Circular/genética , DNA Circular/metabolismo , Evolução Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , RNA/metabolismo , RNA Catalítico/metabolismo , Interface Usuário-Computador
13.
Environ Sci Technol ; 57(11): 4424-4433, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36898019

RESUMO

A big gap exists between current air quality in China and the World Health Organization (WHO) global air quality guidelines (AQG) released in 2021. Previous studies on air pollution control have focused on emission reduction demand in China but ignored the influence of transboundary pollution, which has been proven to have a significant impact on air quality in China. Here, we develop an emission-concentration response surface model coupled with transboundary pollution to quantify the emission reduction demand for China to achieve WHO AQG. China cannot achieve WHO AQG by its own emission reduction for high transboundary pollution of both PM2.5 and O3. Reducing transboundary pollution will loosen the reduction demand for NH3 and VOCs emissions in China. However, to meet 10 µg·m-3 for PM2.5 and 60 µg·m-3 for peak season O3, China still needs to reduce its emissions of SO2, NOx, NH3, VOCs, and primary PM2.5 by more than 95, 95, 76, 62, and 96% respectively, on the basis of 2015. We highlight that both extreme emission reduction in China and great efforts in addressing transboundary air pollution are crucial to reach WHO AQG.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China , Organização Mundial da Saúde
14.
Environ Sci Technol ; 57(34): 12689-12700, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37587658

RESUMO

Value chains have played a critical part in the growth. However, the fairness of the social welfare allocation along the value chain is largely underinvestigated, especially when considering the harmful environmental and health effects associated with the production processes. We used fine-scale profiling to analyze the social welfare allocation along China's domestic value chain within the context of environmental and health effects and investigated the underlying mechanisms. Our results suggested that the top 10% regions in the value chain obtained 2.9 times more social income and 2.1 times more job opportunities than the average, with much lower health damage. Further inspection showed a significant contribution of the "siphon effect"─major resource providers suffer the most in terms of localized health damage along with insufficient social welfare for compensation. We found that inter-region atmosphere transport results in redistribution for 53% health damages, which decreases the welfare-damage mismatch at "suffering" regions but also causes serious health damage to more than half of regions and populations in total. Specifically, around 10% of regions have lower social welfare and also experienced a significant increase in health damage caused by atmospheric transport. These results highlighted the necessity of a value chain-oriented, quantitative compensation-driven policy.


Assuntos
Atmosfera , Políticas , China , Material Particulado
15.
Environ Sci Technol ; 57(14): 5957-5966, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36994990

RESUMO

Organic aerosol (OA) is a key component of fine particulate matter (PM2.5) and affects the human health and leads to climate change. With strict control measures for air pollutants during the last decade, the OA concentration in China declined slowly, while its sources remain unclear. In this study, we simulate the primary OA (POA) and secondary OA (SOA) concentrations from 2005 to 2019 with a state-of-the-art air quality model, Community Multiscale Air Quality (CMAQ, version 5.3.2) coupled with a Two-Dimensional Volatility Basis Set (2D-VBS) module, and a long-term emission inventory of full-volatility organic compounds in China and conduct source apportionment and sensitivity analysis. The simulation results show that, from 2005 to 2019, the OA concentration in China decreased from 24.0 to 12.8 µg/m3 with most of the reduction from POA. The OA pollution from residential biomass burning declined 75% from 2005 to 2019, while it is still the major OA source in China. OA pollution from VCP increased by more than 2-fold and became the largest SOA source in China. From 2014 to 2019, the NOx control in China slightly offset the decrease of SOA concentration due to elevated oxidation capacity.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Humanos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , China , Aerossóis/análise
16.
Nucleic Acids Res ; 49(7): 3681-3691, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744957

RESUMO

Nonenzymatic copying of RNA templates with activated nucleotides is a useful model for studying the emergence of heredity at the origin of life. Previous experiments with defined-sequence templates have pointed to the poor fidelity of primer extension as a major problem. Here we examine the origin of mismatches during primer extension on random templates in the simultaneous presence of all four 2-aminoimidazole-activated nucleotides. Using a deep sequencing approach that reports on millions of individual template-product pairs, we are able to examine correct and incorrect polymerization as a function of sequence context. We have previously shown that the predominant pathway for primer extension involves reaction with imidazolium-bridged dinucleotides, which form spontaneously by the reaction of two mononucleotides with each other. We now show that the sequences of correctly paired products reveal patterns that are expected from the bridged dinucleotide mechanism, whereas those associated with mismatches are consistent with direct reaction of the primer with activated mononucleotides. Increasing the ratio of bridged dinucleotides to activated mononucleotides, either by using purified components or by using isocyanide-based activation chemistry, reduces the error frequency. Our results point to testable strategies for the accurate nonenzymatic copying of arbitrary RNA sequences.


Assuntos
Fosfatos de Dinucleosídeos/química , Técnicas Genéticas , RNA/química , Cinética , Polimerização , Moldes Genéticos
17.
Proc Natl Acad Sci U S A ; 117(47): 29535-29542, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168731

RESUMO

China is challenged with the simultaneous goals of improving air quality and mitigating climate change. The "Beautiful China" strategy, launched by the Chinese government in 2020, requires that all cities in China attain 35 µg/m3 or below for annual mean concentration of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) by 2035. Meanwhile, China adopts a portfolio of low-carbon policies to meet its Nationally Determined Contribution (NDC) pledged in the Paris Agreement. Previous studies demonstrated the cobenefits to air pollution reduction from implementing low-carbon energy policies. Pathways for China to achieve dual targets of both air quality and CO2 mitigation, however, have not been comprehensively explored. Here, we couple an integrated assessment model and an air quality model to evaluate air quality in China through 2035 under the NDC scenario and an alternative scenario (Co-Benefit Energy [CBE]) with enhanced low-carbon policies. Results indicate that some Chinese cities cannot meet the PM2.5 target under the NDC scenario by 2035, even with the strictest end-of-pipe controls. Achieving the air quality target would require further reduction in emissions of multiple air pollutants by 6 to 32%, driving additional 22% reduction in CO2 emissions relative to the NDC scenario. Results show that the incremental health benefit from improved air quality of CBE exceeds 8 times the additional costs of CO2 mitigation, attributed particularly to the cost-effective reduction in household PM2.5 exposure. The additional low-carbon energy polices required for China's air quality targets would lay an important foundation for its deep decarbonization aligned with the 2 °C global temperature target.


Assuntos
Poluição do Ar/análise , Dióxido de Carbono/química , Poluentes Atmosféricos/efeitos adversos , Carbono/química , China , Cidades , Mudança Climática , Monitoramento Ambiental/métodos , Humanos , Paris , Material Particulado/química
18.
J Environ Sci (China) ; 123: 281-291, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521990

RESUMO

PM2.5 concentrations have dramatically reduced in key regions of China during the period 2013-2017, while O3 has increased. Hence there is an urgent demand to develop a synergetic regional PM2.5 and O3 control strategy. This study develops an emission-to-concentration response surface model and proposes a synergetic pathway for PM2.5 and O3 control in the Yangtze River Delta (YRD) based on the framework of the Air Benefit and Cost and Attainment Assessment System (ABaCAS). Results suggest that the regional emissions of NOx, SO2, NH3, VOCs (volatile organic compounds) and primary PM2.5 should be reduced by 18%, 23%, 14%, 17% and 33% compared with 2017 to achieve 25% and 5% decreases of PM2.5 and O3 in 2025, and that the emission reduction ratios will need to be 50%, 26%, 28%, 28% and 55% to attain the National Ambient Air Quality Standard. To effectively reduce the O3 pollution in the central and eastern YRD, VOCs controls need to be strengthened to reduce O3 by 5%, and then NOx reduction should be accelerated for air quality attainment. Meanwhile, control of primary PM2.5 emissions shall be prioritized to address the severe PM2.5 pollution in the northern YRD. For most cities in the YRD, the VOCs emission reduction ratio should be higher than that for NOx in Spring and Autumn. NOx control should be increased in summer rather than winter when a strong VOC-limited regime occurs. Besides, regarding the emission control of industrial processes, on-road vehicle and residential sources shall be prioritized and the joint control area should be enlarged to include Shandong, Jiangxi and Hubei Province for effective O3 control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Material Particulado/análise , Rios , Ozônio/análise , Monitoramento Ambiental/métodos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China
19.
Mol Pharmacol ; 102(5): 234-239, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253099

RESUMO

ATP-sensitive potassium channels (KATP) are energy sensors that participate in a range of physiologic processes. These channels are also clinically validated drug targets. For decades, KATP inhibitors have been prescribed for diabetes and KATP activators have been used for the treatment of hypoglycemia, hypertension, and hair loss. In this Emerging Concepts article, we highlight our current knowledge about the drug binding modes observed using cryogenic electron microscopy techniques. The inhibitors and activators bind to two distinct sites in the transmembrane domain of the sulfonylurea receptor (SUR) subunit. We also discuss the possible mechanism of how these drugs allosterically modulate the dimerization of SUR nucleotide-binding domains (NBDs) and thus KATP channel activity. SIGNIFICANCE STATEMENT: ATP-sensitive potassium channels (KATP) are fundamental to energy homeostasis, and they participate in many vital physiological processes. KATP channels are important drug targets. Both KATP inhibitors (insulin secretagogues) and KATP activators are broadly used clinically for the treatment of related diseases. Recent cryogenic electron microscopy studies allow us to understand the emerging concept of KATP structural pharmacology.


Assuntos
Insulinas , Canais de Potássio Corretores do Fluxo de Internalização , Trifosfato de Adenosina/metabolismo , Insulinas/metabolismo , Canais KATP/metabolismo , Nucleotídeos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Receptores de Droga/química , Receptores de Droga/metabolismo , Secretagogos , Receptores de Sulfonilureias/metabolismo
20.
Environ Sci Technol ; 56(2): 739-749, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34962805

RESUMO

Serious ambient PM2.5 and O3 pollution is one of the most important environmental challenges of China, necessitating an urgent cost-effective cocontrol strategy. Herein, we introduced a novel integrated assessment system to optimize a NOx and volatile organic compound (VOC) control strategy for the synergistic reduction of ambient PM2.5 and O3 pollution. Focusing on the Beijing-Tianjin-Hebei cities and their surrounding regions, which are experiencing the most serious PM2.5 and O3 pollution in China, we found that NOx emission reduction (64-81%) is essential to attain the air quality standard no matter how much VOC emission is reduced. However, the synergistic VOC control is strongly recommended considering its substantially human health and crop production benefits, which are estimated up to 163 (PM2.5-related) and 101 (O3-related) billion CHY during the reduction of considerable emissions. Notably, such benefits will be greatly reduced if the synergistic VOC reduction is delayed. This study also highlights the necessity of simultaneous VOC and NOx emission control in winter while enhancing the NOx control in the summer, which is contrary to the current control strategy adopted in China. These findings point out the right pathways for future policy making on comitigating PM2.5 and O3 pollution in China and other countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Humanos , Ozônio/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA