RESUMO
Alpine grasslands are distributed widely on high-elevated ranges and plateaus from the wet tropics to polar regions, accounting for approximately 3% of the world's land area. The Qinghai-Tibetan Plateau (QTP) is the highest and largest plateau in the world, and approximately 60% of the plateau consists of alpine grassland, which is used mainly for grazing animals. Livestock structure was determined in Guinan (GN), Yushu (YS) and Maqu counties (MQ) on the QTP by interviewing 235 local pastoralists. Based on data collected from GN, the livestock carrying capacity was calculated using herbage dry matter biomass intake (LCCm) by the livestock, and the metabolizable energy yield (LCCe) and digestible crude protein (LCCp) available in pasture. The pasture area per household differed among the regions of the QTP, which was the main reason for the difference in livestock stocking rate. The householders raised the appropriate proportion of breeding females and young yaks and sheep in GN and MQ, but not in YS, to maintain a constant turnover. Most pasture in YS was used at the community level, especially in summer. The calculated carrying capacities based on metabolizable energy yield (LCCe) of the pasture and dry matter biomass (LCCm) were similar in most months except for August, when the value of LCCe was higher than LCCm. Based on the digestible protein of the pasture, the calculated livestock carrying capacity overestimated the actual carrying capacity during the herbage growing season from May to September. Appropriate practices should be taken in different regions of QTP, such as providing supplementary feed, especially protein, during the forage non-growing season. Livestock carrying capacity should be adjusted dynamically, and calculated by a number of parameters. The stocking rate should be controlled to optimize livestock production and curb or minimize grassland degradation to generate a sustainable system. This study examined the grasslands and LCC on the QTP, but the results could be applied to grasslands worldwide.
Assuntos
Pradaria , Gado , Animais , Tibet , Biomassa , Criação de Animais DomésticosRESUMO
Seasonal energy intake of Tibetan sheep on the harsh Qinghai-Tibetan Plateau (QTP) fluctuates greatly and is often well below maintenance requirements. The aim of this study was to gain insight into how the hypothalamus regulates energy homoeostasis in Tibetan sheep. We compared Tibetan and Small-tailed Han sheep (n 24 of each breed), which were each allocated randomly into four groups and offered one of four diets that differed in digestible energy densities: 8·21, 9·33, 10·45 and 11·57 MJ/kg DM. Sheep were weighed every 2 weeks, and it was assumed that the change in body weight (BW) reflected the change in energy balance. The arcuate nucleus of the hypothalamus in Tibetan sheep had greater protein expressions of neuropeptide Y (NPY) and agouti-related peptide (AgRP) when in negative energy balance, but lesser protein expressions of proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) when in positive energy balance than Small-tailed Han sheep. As a result, Tibetan sheep had a lesser BW loss when in negative energy balance and stored more energy and gained more BW when in positive energy balance than Small-tailed Han sheep with the same dietary intake. Moreover, in the hypothalamic adenosine monophosphate-activated protein kinase (AMPK) regulation pathway, Tibetan sheep had greater adenosine monophosphate-activated protein kinase-α 2 protein expression than Small-tailed Han sheep, which supported the premise of a better ability to regulate energy homoeostasis and better growth performance. These differences in the hypothalamic NPY/AgRP, POMC/CART and AMPK pathways between breeds conferred an advantage to the Tibetan over Small-tailed Han sheep to cope with low energy intake on the harsh QTP.
Assuntos
Dieta , Ingestão de Energia , Proteína Relacionada com Agouti , Animais , Dieta/veterinária , Ingestão de Energia/fisiologia , Homeostase , Hipotálamo , Pró-Opiomelanocortina , Ovinos , TibetRESUMO
Diabetes-related lower extremity amputations are an enormous burden on global health care and social resources because of the rapid worldwide growth of the diabetic population. This research aimed to determine risk factors that predict major amputation and analyse the time interval from first hospitalisation to amputation by using standard management protocols and Kaplan-Meier survival curves. Data from 246 patients with diabetes mellitus and diabetic foot ulcers from the Division of Plastic and Reconstructive Surgery of the Department of Surgery at XXX Hospital between January 2016 and May 2020 were analysed. Univariate and multivariate analyses of 44 potential risk factors, including invasive ulcer depth and C-reactive protein levels, showed statistically significant differences for those at increased risk for major amputation. The median time from hospitalisation to lower extremity amputation was approximately 35 days. Most patients with abnormal C-reactive protein levels and approximately 70% of patients with ulcers invading the bone were at risk for lower extremity amputations within 35 days. Therefore, invasive ulcer depth and C-reactive protein levels are significant risk factors. Other potential risk factors for major amputation and the time intervals from first hospitalisation to amputation should be analysed to establish further prediction strategies.
Assuntos
Diabetes Mellitus , Pé Diabético , Amputação Cirúrgica/efeitos adversos , Proteína C-Reativa , Pé Diabético/epidemiologia , Humanos , Extremidade Inferior/cirurgia , Fatores de RiscoRESUMO
BACKGROUND: Early weaning in yak calves is being attempted to improve yak reproduction rate. However, this has to be done with caution because of the high mortality rate of calves due to the lack of nutrients and the harsh environmental conditions. Twenty-four weaned male yak calves were used in a 60 day feeding trial in which astragalus root extract (ARE) was supplemented. They were assigned randomly to one of four dietary treatments (n = six per treatment) that differed in ARE level: 0 g kg-1 (control), ARE0 ; 20 g kg-1 , ARE20 ; 50 g kg-1 , ARE50; and 80 g kg-1 dry matter intake (DMI), ARE80 . RESULTS: Final bodyweight and average daily gain (ADG) were significantly higher and the DMI/ADG ratio was significantly lower in calves with ARE supplementation than control (ARE0 ) calves. Ruminal concentrations of acetate and propionate and serum concentration of superoxide dismutase in ARE80 calves were higher than in the other groups and serum concentration of insulin was higher in ARE80 calves than in ARE20 calves. Serum immunoglobulin G (IgG) and interleukin-2 (IL-2) concentrations in ARE-fed calves were higher than in controls. Serum tumor necrosis factor (TNF-α) concentration was higher in ARE50 and ARE80 groups than ARE0 calves and serum interleukin-6 (IL-6) concentration was higher in ARE80 than in ARE0 calves. Serum immunoglobulin A (IgA), IgG and immunoglobulin M (IgM) concentrations increased with age in ARE-fed calves. ARE supplementation increased the abundance of fiber degrading bacteria. CONCLUSION: ARE at a dosage of 5% to 8% DMI can be supplemented to early weaned yak calves to improve growth performance, antioxidant capacity and immunity. © 2020 Society of Chemical Industry.
Assuntos
Ração Animal/análise , Astrágalo/metabolismo , Bovinos/crescimento & desenvolvimento , Bovinos/imunologia , Microbioma Gastrointestinal , Animais , Antioxidantes/metabolismo , Astrágalo/química , Bovinos/metabolismo , Bovinos/microbiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Masculino , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Rúmen/metabolismo , Rúmen/microbiologiaRESUMO
The nutritional intake of Tibetan sheep on the harsh Qinghai-Tibetan Plateau is often under maintenance requirements, especially during the long, cold winter. However, they have adapted well and even thrive under these conditions. The aim of the present study was to gain insight into how the rumen epithelium of Tibetan sheep has adapted to the consumption of low-energy-level diets. For this purpose, we compared Tibetan and small-tailed Han sheep (n 24 of each breed, all wethers and 1·5 years of age), which were divided randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8·21, 9·33, 10·45 and 11·57 MJ DE/kg DM. The Tibetan sheep had higher rumen concentrations of total SCFA, acetate, butyrate and iso-acids but lower concentrations of propionate than small-tailed Han sheep. The Tibetan sheep had higher absorption capability of SCFA due to the greater absorption surface area and higher mRNA expression of the SCFA absorption relative genes than small-tailed Han sheep. For the metabolism of SCFA in the rumen epithelium, the small-tailed Han sheep showed higher utilisation of the ketogenesis pathway than Tibetan sheep; however, Tibetan sheep had greater regulation capacity in SCFA metabolism pathways. These differences between breeds allowed the Tibetan sheep to have greater capability of absorbing SCFA and better capacity to regulate the metabolism of SCFA, which would allow them to cope with low energy intake better than small-tailed Han sheep.
Assuntos
Ingestão de Energia/fisiologia , Epitélio/fisiologia , Ácidos Graxos Voláteis/metabolismo , Rúmen/fisiologia , Ovinos/fisiologia , Animais , Ecossistema , Regulação da Expressão Gênica/fisiologia , Masculino , Ovinos/genética , TibetRESUMO
This study aimed to gain insight into how adipose tissue of Tibetan sheep regulates energy homoeostasis to cope with low energy intake under the harsh environment of the Qinghai-Tibetan Plateau (QTP). We compared Tibetan and Small-tailed Han sheep (n 24 of each breed), all wethers and 1·5 years of age, which were each divided randomly into four groups and offered diets of different digestible energy (DE) densities: 8·21, 9·33, 10·45 and 11·57 MJ DE/kg DM. When the sheep lost body mass and were assumed to be in negative energy balance: (1) adipocyte diameter in subcutaneous adipose tissue was smaller and decreased to a greater extent in Tibetan than in Small-tailed Han sheep, but the opposite occurred in the visceral adipose tissue; (2) Tibetan sheep showed higher insulin receptor mRNA expression and lower concentrations of catabolic hormones than Small-tailed Han sheep and (3) Tibetan sheep had lower capacity for glucose and fatty acid uptake than Small-tailed Han sheep. Moreover, Tibetan sheep had lower AMPKα mRNA expression but higher mammalian target of rapamycin mRNA expression in the adipocytes than Small-tailed Han sheep. We concluded that Tibetan sheep had lower catabolism but higher anabolism in adipose tissue and reduced the capacity for glucose and fatty acid uptake to a greater extent than Small-tailed Han sheep to maintain energy homoeostasis when in negative energy balance. These responses provide Tibetan sheep with a high ability to cope with low energy intake and with the harsh environment of the QTP.
Assuntos
Adipócitos/fisiologia , Tecido Adiposo/fisiologia , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Restrição Calórica/veterinária , Ingestão de Energia/fisiologia , Ração Animal , Animais , Dieta/veterinária , Metabolismo Energético , Meio Ambiente , Homeostase , Metabolismo dos Lipídeos , Fenótipo , Ovinos , TibetRESUMO
Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau, graze the grassland all year round without supplementation and are well-adapted to the harsh conditions. Small-tailed Han sheep were introduced to the plateau and are raised mainly in feedlots. Based on their different backgrounds, we hypothesized that the ability to cope with poor diets would be better in Tibetan than in Han sheep. To test our prediction, we examined the effect of dietary energy on apparent digestibilities, rumen fermentation, urinary purine derivatives and serum metabolites by using a 4 × 4 Latin square design in each sheep breed. Four diets were formulated to be low in crude protein (~7%) but to differ in metabolizable energy concentration. Average daily gain was greater in Tibetan than in Han sheep (p < 0.01) and increased linearly with an increase in energy intake (p < 0.001). The digestibilities of dry matter, organic matter, gross energy, and neutral and acid detergent fibres were greater in Tibetan than in Han sheep (p < 0.05). Ruminal pH was lower (p < 0.05), while volatile fatty acids (VFAs), urea-N, ammonia-N and soluble protein-N concentrations were higher (p < 0.05) in Tibetan than in Han sheep. As a molar proportion of total VFA, acetate decreased (p < 0.001) with an increase in dietary energy whereas propionate and butyrate increased (p < 0.05). Urinary purine derivative excretion was greater in Tibetan than in Han sheep (p < 0.01), as was microbial nitrogen production; both parameters increased with dietary energy (p < 0.01). Serum concentrations of glucose, insulin and insulin-like growth factor-1 increased (p < 0.05) as energy level increased, while non-esterified fatty acids and growth hormone decreased (p < 0.05). It was concluded that Tibetan sheep were better able to cope with low-protein, low-energy diets and, consequently, our prediction was supported.
Assuntos
Ração Animal/análise , Dieta/veterinária , Digestão/fisiologia , Purinas/urina , Rúmen/fisiologia , Ovinos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ingestão de Energia , Fermentação , Nitrogênio/química , Rúmen/química , Ovinos/genéticaRESUMO
Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear advantage of the smaller-seeded species over the larger-seeded species with increases in the grazing level.
Assuntos
Ecossistema , Herbivoria , Plantas/classificação , Sementes/classificação , Sementes/fisiologia , Animais , Bovinos , Ovinos/fisiologia , Especificidade da EspécieRESUMO
Tibetan nomads have lived since ancient times in the unique and harsh environment of the Qinghai-Tibetan Plateau with average altitudes over 4000 m. These people have been able to live and multiply healthily over numerous generations under the extreme stress of high-altitude environment, including cold, hypoxia, and strong ultraviolet radiation, and with a simple diet devoid of vegetables and fruits for most of the year. Their survival depends heavily on yak milk, and its products comprise the main portion of their daily diet. In this review, yak milk and its derived products are examined in detail and compared with milk from other ruminant species. Yak milk products seem to be particularly rich in functional and bioactive components, which may play a role in maintaining the health status of Tibetan nomads. This includes particular profiles of amino acids and fatty acids, and high levels of antioxidant vitamins, specific enzymes, and bacteria with probiotic activity (yoghurt is the main food). Based on that, it is proposed that the Tibetan nomads have developed a nutritional mechanism adapted to cope with the specific challenges posed by the environment of the world's highest plateau. Systematic studies are required to demonstrate this in a more mechanistic way.
Assuntos
Altitude , Bovinos , Dieta , Nível de Saúde , Leite/química , Aminoácidos/análise , Animais , Antioxidantes/análise , Laticínios , Ácidos Graxos/análise , Feminino , Humanos , Leite/microbiologia , Necessidades Nutricionais , Probióticos , Tibet , Migrantes , Vitaminas/análiseRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Rheum palmatum (RP) is a widely used traditional herb, which possesses antioxidant properties, inhibits ROS production and reduces fever. AIM OF THE STUDY: The aim of this study was to examine the antioxidative properties of the water extract of RP on oxidative-stressed mice. MATERIALS & METHODS: Forty mice were administered with DL-homocysteine (DL-Hcy) to induce oxidative stress and were divided into four groups: 1) CK: NaCl and water; 2) DL-Hcy: DL-Hcy and water; 3) DL-Hcy+50RP: DL-Hcy with 50 mg kg-1 body weight (BW) d-1 RP; and 4) DL-Hcy+150RP: DL-Hcy with 150 mg kg-1 BW d-1 RP. Rhein (0.3 mg g-1 dry matter) was the main active ingredient in RP. RESULTS: When compared with Dl-Hcy mice, the mice with supplementary RP mitigated oxidative stress by reducing the liver concentrations of superoxide dismutase (SOD) by 27% and glutathione peroxidase (GSH-Px) by 32%, and the reactive oxygen species (ROS) in the kidney and spleen. These responses were more pronounced in DL-Hcy+150RP than DL-Hcy+50RP mice. RP also exhibited therapeutic effects on liver steatosis, chronic kidney nephritis and intestinal villus width shortening caused by oxidative stress, and concomitantly decreased the serum glucose concentration (RP vs. DL-HCY, 2.3 vs. 4.1 mmol L-1). CONCLUSION: It was concluded that RP possesses antioxidant and therapeutic properties that can mitigate lesions on organs and prevent diabetes in oxidative-stressed mice. This study highlights the potential of RP as a medicinal supplement for animals in the future.
Assuntos
Antioxidantes , Estresse Oxidativo , Extratos Vegetais , Espécies Reativas de Oxigênio , Rheum , Animais , Rheum/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Masculino , Água/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Superóxido Dismutase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Glutationa Peroxidase/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismoRESUMO
The gut microbiota is a diverse and complex population, and it has a key role in the host's health and adaptability to the environment. The present study investigated the fecal bacterial community of wild grazing (WG) and domestic grazing (DG) yaks on natural grazing pastures, analyzing the gut microbiota using 16S rRNA sequencing to assess bacterial diversity. A total of 48 yak fecal samples were selected from two different grazing habitats. The DG group had more crude proteins and non-fiber carbohydrates. The WG group had more OM, insoluble dietary fiber such as NDF, ADF, ether extract, and TC. There were 165 and 142 unique operational taxonomic units (OTUs) in the WG and DG groups, respectively. Shannon index analysis revealed a higher bacterial diversity in the WG group than in the DG group. At the phylum level, Firmicutes were the dominant bacterial taxa in both groups. The relative abundance of Firmicutes in the WG group was higher than in the DG group. At the family level, the WG group had a significantly higher abundance of Ruminococcaceae (p < 0.001) and Rikenellaceae (p < 0.001) than the DG group. The abundances of Alloprevotella and Succinivibrio were more pronounced in the DG group than in the WG group at the genus level. This study presents a novel understanding of the bacterial communities of ruminants and their potential applications for livestock production.
RESUMO
Livestock on the Qinghai-Tibetan Plateau is of great importance for the livelihood of the local inhabitants and the ecosystem of the plateau. The natural, harsh environment has shaped the adaptations of local livestock while providing them with requisite eco-services. Over time, unique genes and metabolic mechanisms (nitrogen and energy) have evolved which enabled the yaks to adapt morphologically and physiologically to the Qinghai-Tibetan Plateau. The rumen microbiota has also co-evolved with the host and contributed to the host's adaptation to the environment. Understanding the complex linkages between the rumen microbiota, the host, and the environment is essential to optimizing the rumen function to meet the growing demands for animal products while minimizing the environmental impact of ruminant production. However, little is known about the mechanisms of host-rumen microbiome-environment linkages and how they ultimately benefit the animal in adapting to the environment. In this review, we pieced together the yak's adaptation to the Qinghai-Tibetan Plateau ecosystem by summarizing the natural selection and nutritional features of yaks and integrating the key aspects of its rumen microbiome with the host metabolic efficiency and homeostasis. We found that this homeostasis results in higher feed digestibility, higher rumen microbial protein production, higher short-chain fatty acid (SCFA) concentrations, and lower methane emissions in yaks when compared with other low-altitude ruminants. The rumen microbiome forms a multi-synergistic relationship among the rumen microbiota services, their communities, genes, and enzymes. The rumen microbial proteins and SCFAs act as precursors that directly impact the milk composition or adipose accumulation, improving the milk or meat quality, resulting in a higher protein and fat content in yak milk and a higher percentage of protein and abundant fatty acids in yak meat when compared to dairy cow or cattle. The hierarchical interactions between the climate, forage, rumen microorganisms, and host genes have reshaped the animal's survival and performance. In this review, an integrating and interactive understanding of the host-rumen microbiome environment was established. The understanding of these concepts is valuable for agriculture and our environment. It also contributes to a better understanding of microbial ecology and evolution in anaerobic ecosystems and the host-environment linkages to improve animal production.
RESUMO
An experiment was conducted to study the seasonal changes in the fatty acid profile of milk from yaks (Bos grunniens) when kept at altitudes of 3000 m above sea level (a.s.l.) and higher. Data and samples were collected in summer (July), autumn (September), winter (November) and spring (March) from ten lactating yaks (four in spring). The yaks grazed pastures adjacent to the farm building throughout the year. In spring only they received 0·6 kg crop by-products per day (dry matter basis). Fresh alpine grasses, available in summer and autumn, showed high concentrations of α-linolenic acid (46-51 g/100 g lipids) compared with the dry, yellow vegetation of winter and spring (16 g/100 g lipids). In autumn and summer, the milk fat had higher concentrations of polyunsaturated fatty acids than in winter. These polyunsaturated fatty acids were comprised of vaccenic acid, rumenic acid and α-linolenic acid, which are all considered beneficial to human health. The rare fatty acid, γ-linolenic acid, was also detected in yak milk, especially in the milk obtained in spring. The results suggest that yak milk, which is the most important basic food of the Tibetan herders, has the most favourable fatty acid profile when yaks grazed green pasture, which also corresponds to the period of highest milk production.
Assuntos
Criação de Animais Domésticos , Bovinos , Leite/química , Estações do Ano , Altitude , Animais , Ácidos Graxos/química , FemininoRESUMO
Grazing exclusion (GE) is a management option used widely to restore degraded grassland and improve grassland ecosystems. However, the impacts of GE on soil properties and greenhouse gas emissions of alpine shrub meadow are still unclear, especially long-term GE of more than ten years. To fill part of this gap, we examined the effects of long-term GE of alpine shrub meadow on soil nutrients, soil properties, greenhouse gas emissions (CO2 and CH4) and soil organic carbon (SOC) turnover. When compared to grazed grassland (GG), long-term GE resulted in: 1) greater SOC, nitrogen (N), and phosphorous (P) content, especially in the 20-30 cm soil layer; 2) greater soil C:N, C:P and N:P ratios in the 20-30 cm depth; 3) greater soil CO2, but lesser CH4 emission during the growing season; and 4) much faster SOC turnover time (0-30 cm). GE of more than ten years can increase grassland C reserves and improve the C sequestration capacity of the ecosystem. Results from this study can have important implications in developing future grassland management policies on soil nutrient balances, restoration of degraded grassland and controlling shrub expansion.
Assuntos
Gases de Efeito Estufa , Solo , Carbono/análise , Pradaria , Ecossistema , Dióxido de Carbono/análiseRESUMO
Chinese traditional herbs are used widely as feed supplements to improve the immune response and antioxidant capacity of livestock. Twenty early-weaned 4-month-old yak calves (72.3 ± 3.65 kg) were divided randomly into four groups (n = 5 per group); three groups were provided with supplementary 80 mL/kg DMI of the root water extracts of either Angelica sinensis, Codonopsis pilosula or Glycyrrhiza uralensis, and one group (control) was not provided with a supplement. Compared to control calves, calves consuming the three herbal extracts increased serum concentrations of albumin (ALB) and glutathione peroxidase (GSH-Px), but decreased serum concentrations of free fatty acids (FFAs) and malondialdehyde (MDA) (p < 0.05). Calves consuming A. sinensis decreased (p < 0.05) serum concentration of total cholesterol (TC), and increased (p < 0.05) serum concentration of total proteins (TP). Serum FFA concentrations increased (p = 0.004) linearly with time in the control group, but not in the groups consuming herbs. Serum metabolomic data demonstrated that A. sinensis and C. pilosula regulate mainly amino acid metabolism, while G. uralensis regulates mainly carbon and amino acid metabolism. It was concluded that the three herbal root extracts, as dietary supplements, improved energy and nitrogen metabolism, and enhanced the antioxidant capacity of yak calves.
RESUMO
The yak (Bos grunniens), an indigenous herbivore raised at altitudes between 3,000 and 5,000 m above sea level, is closely linked to more than 40 ethnic communities and plays a vital role in the ecological stability, livelihood security, socio-economic development, and ethnic cultural traditions in the Asian highlands. They provide the highlanders with meat, milk, fibres, leather and dung (fuel). They are also used as pack animals to transport goods, for travel and ploughing, and are important in many religious and traditional ceremonies. The Asian highlands are known for an extremely, harsh environment, namely low air temperature and oxygen content and high ultraviolet light and winds. Pasture availability fluctuates greatly, with sparse pasture of poor quality over the long seven-month cold winter. After long-term natural and artificial selections, yaks have adapted excellently to the harsh conditions: 1) by genomics, with positively selected genes involved in hypoxia response and energy metabolism; 2) anatomically, including a short tongue with a weak sense of taste, and large lung and heart; 3) physiologically, by insensitivity to hypoxic pulmonary vasoconstriction, maintaining foetal haemoglobin throughout life, and low heart rate and heat production in the cold season; 4) behaviourlly, by efficient grazing and selecting forbs with high nutritional contents; 5) by low nitrogen and energy requirements for maintenance and low methane emission and nitrogen excretion, namely, 'Low-Carbon' and 'Nitrogen-Saving' traits; 6) by harboring unique rumen microbiota with a distinct maturation pattern, that has co-evolved with host metabolism. This review aims to provide an overview of the comprehensive adaptive strategies of the yak to the severe conditions of the highlands. A better understanding of these strategies that yaks employ to adapt to the harsh environment could be used in improving their production, breeding and management, and gaining benefits in ecosystem service and a more resilient livelihood to climate change in the Asian highlands.
RESUMO
Variation in food and diet shapes the diversity of the gut microbiota of ruminants. The present study investigated the microbial diversity in the fecal microbiota of yaks reared under natural grazing and feedlot system. A total of 48 domestic yaks with an average age of 7.5 years were selected from two different grazing habitats: one group grazed on natural pasture (grazing yaks-GY) while the other group was fed fodder and concentrate (feedlot yaks-FY). Crude protein, non-fiber carbohydrate, hemicelluloses, and digestible dry matter contents of natural pastures were higher than those in the feedlot. The lower insoluble fiber contents were found in grazing land. The 16S rRNA gene sequencing revealed 675 and 348 unique operational taxonomic units (OTUs) in the GY and FY, respectively, in addition to 1,778 common OTUs. Overall, a total of 9,891 OTUs were identified as a whole, of which 6,160 OTUs were from GY and 3,731 were from FY. Shannon index analysis revealed a higher bacterial diversity in GY than FY. At the phylum level, Firmicutes were dominant bacterial taxa in both groups. The relative abundance of Firmicutes in GY (56% ± 0.05) was higher than in FY (41% ± 0.08). At the family level, GY had a significantly higher abundance of Ruminococcaceae (p < 0.001) and Rikenellaceae (p < 0.001) than FY, but FY had a significantly higher abundance of Prevotellaceae than GY (p < 0.001). At the genus level, abundances of Faecalibacterium, Alloprevotella, and Succinivibrio were higher in FY than in GY. This study presents novel information on fecal bacterial composition and diversity in yaks reared under two different production systems.
RESUMO
Traditionally, yaks graze only natural grassland, even in harsh winters. Meat from grazing yaks is considered very healthy; however, feedlot fattening, which includes concentrate, has been introduced. We questioned whether this change in management and diet would have an impact on the rumen and meat quality of yaks. This study examined the morphology, fermentation, and microbiota of the rumen and the quality of meat of three groups of bovines: (1) grazing yaks (GYs, 4-year olds), without dietary supplements; (2) yaks (FYs, 2.5-year olds) feedlot-fattened for 5 months after grazing natural pasture; and (3) feedlot-fattened cattle (FC, Simmental, 2-year olds). This design allowed us to determine the role of diet (with and without concentrate) and genotype (yaks vs. cattle) on variables measured. Ruminal papillae surface area was greater in the FYs than in the GYs (P = 0.02), and ruminal microbial diversity was greater but richness was lesser in the GYs than in the FC and FYs. Concentrations of ruminal volatile fatty acids were greater in the yaks than in the cattle. In addition, both yak groups had higher protein and lower fat contents in meat than the FC. Meat of GY had a lower n6:n3 ratio than FY and FC, and was the only group with a ratio below r, which is recommended for healthy food. Essential amino acids (EAA), as a proportion of total AA and of non-essential AA of yak meat, met WHO criteria for healthy food; whereas FC did not.
RESUMO
Natural, non-toxic feed additives can potentially replace chemical medications and antibiotics that are offered sheep to improve performance. In the present study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT), a traditional herb used widely in China. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9-month-old) were assigned randomly to one of four levels of supplementary AMT: 0 g/kg (A0), 20 g/kg (A20), 50 g/kg (A50) and 80 g/kg (A80) dry matter intake (DMI). The A50 and A80 groups increased the diversity of rumen bacteria on d 14 and the relative abundances of fiber decomposing bacteria. Supplementary AMT upregulated the metabolism of vitamins, nucleotides, amino acids and glycan, and downregulated the metabolism of lipids and carbohydrates. In addition, supplementary AMT enriched rumen bacteria for drug resistance, and reduced bacteria incurring cell motility. In general, AMT supplementation increased the concentrations of catalase (CAT), superoxide dismutase (SOD) total antioxidant capacity (T-AOC) and secretory immunoglobulin A (sIgA) in the small intestinal mucosa and CAT and SOD in meat tissue. The liver tissue metabolome response showed that AMT in the A80 lambs compared to the A0 lambs upregulated the metabolites for energy synthesis. It was concluded that supplementary A. membranaceus increased the relative abundances of fiber decomposing bacteria and improved the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue in Tibetan sheep.
RESUMO
In this paper, the membrane filtration-photocatalytic coupling process was used to explore the mechanism and removal effect of trace concentrations of sulfadiazine (SD) in drinking water. First, 8 kinds of ultrafiltration membranes were successfully prepared, and their performance was verified by scanning electron microscopy and measurement of the contact angle, membrane pure water flux, porosity and average pore size. The results showed that the best-performing membranes were the PVDF-PP-TiO2-DA (dopamine) (PPT1D)- and PVDF-PP-TiO2-FeCl3 (PPT2Fe)-modified ultrafiltration membranes, in which TiO2 was modified with DA and FeCl3, forming the cooperation of TiO2/DA and TiO2/Fe3+, with removal rates of 91.4% and 92.6% and quasi-first-order rates of 0.0216 min-1 and 0.0214 min-1. At the same time, the effects of the two types of membrane, UV light and water quality characteristics on the removal performance of the membrane filtration-photocatalytic system were discussed. Among them, the PPT1D membrane was more suitable than the other membranes for the degradation of weakly alkaline water containing SD (pH = 7.5), except when NO3- was present, and the water quality characteristics had a significant inhibitory effect on the removal effect. The PPT2Fe membrane was more suitable for the degradation of acidic water containing SD (pH = 3). Additionally, the water quality characteristics had an obvious inhibitory effect on the removal effect, and the accuracy of the water distribution experimental results was verified by using an actual body of water. In the end, the reaction mechanism of the filtration-photocatalytic system was proposed, and it was found that OH played an indispensable role in the removal of SD.