Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
New Phytol ; 242(5): 2093-2114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511255

RESUMO

Most splicing factors are extensively phosphorylated but their physiological functions in plant salt resistance are still elusive. We found that phosphorylation by SnRK1 kinase is essential for SRRM1L nuclear speckle formation and its splicing factor activity in plant cells. In Arabidopsis, loss-of-function of SRRM1L leads to the occurrence of alternative pre-mRNA splicing events and compromises plant resistance to salt stress. In Arabidopsis srrm1l mutant line, we identified an intron-retention Nuclear factor Y subunit A 10 (NFYA10) mRNA variant by RNA-Seq and found phosphorylation-dependent RNA-binding of SRRM1L is indispensable for its alternative splicing activity. In the wild-type Arabidopsis, salt stress can activate SnRK1 to phosphorylate SRRM1L, triggering enrichment of functional NFYA10.1 variant to enhance plant salt resistance. By contrast, the Arabidopsis srrm1l mutant accumulates nonfunctional NFYA10.3 variant, sensitizing plants to salt stress. In summary, this work deciphered the molecular mechanisms and physiological functions of SnRK1-SRRM1L-NFYA10 module, shedding light on a regulatory pathway to fine-tune plant adaptation to abiotic stress at the post-transcriptional and post-translational levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Tolerância ao Sal , Processamento Alternativo/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA/genética , Estresse Salino/genética , Tolerância ao Sal/genética
2.
Plant J ; 111(2): 473-495, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35562858

RESUMO

Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.


Assuntos
Arabidopsis , Phytophthora , Arabidopsis/metabolismo , Resistência à Doença/genética , Phytophthora/fisiologia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674741

RESUMO

SnRK1 protein kinase plays hub roles in plant carbon and nitrogen metabolism. However, the function of SnRK1 in legume nodulation and symbiotic nitrogen fixation is still elusive. In this study, we identified GmNodH, a putative sulfotransferase, as an interacting protein of GmSnRK1 by yeast two-hybrid screen. The qRT-PCR assays indicate that GmNodH gene is highly expressed in soybean roots and could be induced by rhizobial infection and nitrate stress. Fluorescence microscopic analyses showed that GmNodH was colocalized with GsSnRK1 on plasma membrane. The physical interaction between GmNodH and GmSnRK1 was further verified by using split-luciferase complementary assay and pull-down approaches. In vitro phosphorylation assay showed that GmSnRK1 could phosphorylate GmNodH at Ser193. To dissect the function and genetic relationship of GmSnRK1 and GmNodH in soybean, we co-expressed the wild-type and mutated GmSnRK1 and GmNodH genes in soybean hairy roots and found that co-expression of GmSnRK1/GmNodH genes significantly promoted soybean nodulation rates and the expression levels of nodulation-related GmNF5α and GmNSP1 genes. Taken together, this study provides the first biological evidence that GmSnRK1 may interact with and phosphorylate GmNodH to synergistically regulate soybean nodulation.


Assuntos
Glycine max , Nodulação , Nodulação/genética , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Simbiose/genética , Regulação da Expressão Gênica de Plantas
4.
Entropy (Basel) ; 25(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36673268

RESUMO

The K-nearest neighbor (KNN) algorithm is one of the most extensively used classification algorithms, while its high time complexity limits its performance in the era of big data. The quantum K-nearest neighbor (QKNN) algorithm can handle the above problem with satisfactory efficiency; however, its accuracy is sacrificed when directly applying the traditional similarity measure based on Euclidean distance. Inspired by the Polar coordinate system and the quantum property, this work proposes a new similarity measure to replace the Euclidean distance, which is defined as Polar distance. Polar distance considers both angular and module length information, introducing a weight parameter adjusted to the specific application data. To validate the efficiency of Polar distance, we conducted various experiments using several typical datasets. For the conventional KNN algorithm, the accuracy performance is comparable when using Polar distance for similarity measurement, while for the QKNN algorithm, it significantly outperforms the Euclidean distance in terms of classification accuracy. Furthermore, the Polar distance shows scalability and robustness superior to the Euclidean distance, providing an opportunity for the large-scale application of QKNN in practice.

5.
Entropy (Basel) ; 24(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36554224

RESUMO

Image matching is an important research topic in computer vision and image processing. However, existing quantum algorithms mainly focus on accurate matching between template pixels, and are not robust to changes in image location and scale. In addition, the similarity calculation of the matching process is a fundamentally important issue. Therefore, this paper proposes a hybrid quantum algorithm, which uses the robustness of SIFT (scale-invariant feature transform) to extract image features, and combines the advantages of quantum exponential storage and parallel computing to represent data and calculate feature similarity. Finally, the quantum amplitude estimation is used to extract the measurement results and realize the quadratic acceleration of calculation. The experimental results show that the matching effect of this algorithm is better than the existing classical architecture. Our hybrid algorithm broadens the application scope and field of quantum computing in image processing.

6.
Plant J ; 102(4): 779-796, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31872463

RESUMO

Plasma membrane intrinsic proteins (PIPs) are known to be major facilitators of the movement of a number of substrates across cell membranes. From a drought-resistant cultivar of Oryza sativa (rice), we isolated an OsPIP1;3 gene single-nucleotide polymorphism (SNP) that is mostly expressed in rice roots and is strongly responsive to drought stress. Immunocytochemistry showed that OsPIP1;3 majorly accumulated on the proximal end of the endodermis and the cell surface around the xylem. Expression of GFP-OsPIP1;3 alone in Xenopus oocytes or rice protoplasts showed OsPIP1;3 mislocalization in the endoplasmic reticulum (ER)-like neighborhood, whereas co-expression of OsPIP2;2 recruited OsPIP1;3 to the plasma membrane and led to a significant enhancement of water permeability in oocytes. Moreover, reconstitution of 10×His-OsPIP1;3 in liposomes demonstrated water channel activity, as revealed by stopped-flow light scattering. Intriguingly, by patch-clamp technique, we detected significant NO3- conductance of OsPIP1;3 in mammalian cells. To investigate the physiological functions of OsPIP1;3, we ectopically expressed the OsPIP1;3 gene in Nicotiana benthamiana (tobacco). The transgenic tobacco plants exhibited higher photosynthesis rates, root hydraulic conductivity (Lpr ) and water-use efficiency, resulting in a greater biomass and a higher resistance to water deficit than the wild-type did. Further experiments suggested that heterologous expression of OsPIP1;3 in cyanobacterium altered bacterial growth under different conditions of CO2 gas supply. Overall, besides shedding light on the multiple functions played by OsPIP1;3, this work provides insights into the translational value of plant AQPs.


Assuntos
Expressão Ectópica do Gene , Oryza/genética , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
7.
Theor Appl Genet ; 134(2): 505-518, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33140169

RESUMO

KEY MESSAGE: Anatomical changes in and hormone roles of the exserted stigma were investigated, and localization and functional analysis of SlLst for the exserted stigma were performed using SLAF-BSA-seq, parental resequencing and overexpression of SlLst in tomato. Tomato accession T431 produces stigmas under relatively high temperatures (> 27 °C, the average temperature in Harbin, China, in June-August), so pollen can rarely reach the stigma properly. This allows the percentage of male sterility exceed 95%, making the use of this accession practical for hybrid seed production. To investigate the mechanism underlying the exserted stigma male sterility, the morphological changes of, anatomical changes of, and comparative endogenous hormone (IAA, ABA, GA3, ZT, SA) changes in flowers during flower development of tomato accessions DL5 and T431 were measured. The location and function of genes controlling exserted stigma sterility were analyzed using super SLAF-BSA-seq, parental resequencing, comparative genomics and the overexpression of SlLst in tomato. The results showed that an increase in cell number mainly caused stigma exsertion. IAA played a major role, while ABA had an opposite effect on stigma exertion. Moreover, 26 candidate genes related to the exserted stigma were found, located on chromosome 12. The Solyc12g027610.1 (SlLst) gene was identified as the key candidate gene by functional analysis. A subcellular localization assay revealed that SlLst is targeted to the nucleus and cell membrane. Phenotypic analysis of SlLst-overexpressing tomato showed that SlLst plays a crucial role during stigma exsertion.


Assuntos
Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Sementes/anatomia & histologia , Solanum lycopersicum/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Marcadores Genéticos , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
8.
Appl Microbiol Biotechnol ; 105(2): 755-768, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33409608

RESUMO

In this study, we firstly reported the large-scale screening and isolation of endophytic fungi from nine wild and six cultivated soybeans in the cold regions of China. We totally isolated 302 endophytic fungal strains, of which 215 strains are isolated from the wild soybeans and 87 are identified from cultivated soybeans. Among these endophytic fungal strains, in the roots, stems, and leaves, 24.17% were isolated from roots, 28.8% were isolated from stems, and 47.01% were isolated from leaves, respectively. Most endophytic fungal strains isolated from the wild soybean roots were the species of Fusarium genus, and the fungal strains in the stems were the species of ascomycetes and Fusarium fungi, whereas most strains in the leaves were Alternaria fungi. To analyze the taxonomy of the obtained samples, we sequenced and compared their rDNA internal transcribed spacer (ITS) sequences. The data showed that 6 strains are putatively novel strains exhibiting ≤ 97% homology with the known strains. We next measured the secondary metabolites produced by the different strains and we found 11 strains exhibited high-performance synthesis of triterpenoids, phenols, and polysaccharides. Furthermore, we characterized their tolerance to abiotic stresses. The results indicated that 4 strains exhibited high tolerance to cadmium, and some strains exhibited resistance to acid, and alkali. The results of the study could facilitate the further exploration of the diversity of plant endophytic fungi and the potential applications of the fungi to practical agriculture and medicine industries. KEY POINTS: • 302 endophytic fungal strains isolated from wild soybean and cultivated soybean • 11 strains had high contents of triterpenoids, phenols, and polysaccharides • 4 strains exhibited high Cd tolerance, and a few strains with strong tolerance to acid and alkali solution.


Assuntos
Endófitos , Glycine max , China , Endófitos/genética , Fungos/genética , Filogenia , Folhas de Planta , Raízes de Plantas
9.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209353

RESUMO

Acoustic metamaterials are materials with artificially designed structures, which have characteristics that surpass the behavior of natural materials, such as negative refraction, anomalous Doppler effect, plane focusing, etc. This article mainly introduces and summarizes the related research progress of acoustic metamaterials in the past two decades, focusing on meta-atomic acoustic metamaterials, metamolecular acoustic metamaterials, meta-atomic clusters and metamolecule cluster acoustic metamaterials. Finally, the research overview and development trend of acoustic metasurfaces are briefly introduced.

10.
Breast Cancer Res Treat ; 180(2): 379-384, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32034579

RESUMO

PURPOSE: Protease-activated receptor 1 (PAR1) is a signaling protein ubiquitously present on the surface of tumor cells, and its homologous protein fragment, PAR1-activating peptide (P1AP), can inhibit protein signal transduction of PAR1/G in tumor cells. pH (Low) insertion peptide (pHLIP) can target the acidic tumor microenvironment (TME) and can be used as an excellent carrier to deliver P1AP to tumor cells for therapeutic purposes. METHODS: PAR1 expression on the surface of MDA-MB-231 cells and human MCF10A mammary epithelial cells was observed. The binding between fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells under different pH values was analyzed. The effect of pHLIP(Var7)-P1AP on the proliferation of MDA-MB-231 cells was analyzed under the conditions of pH 7.4 and 6.0. RESULTS: PAR1 was highly expressed on the surface of MDA-MB-231 cells. In an acidic environment (pH 6.0 and 5.0), fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells had a high binding ability, and the binding ability increased with the decrease in pH. In an acidic environment (pH 6.0), pHLIP(Var7)-P1AP significantly inhibited MDA-MB-231 cell proliferation. With 0.5 µg, 1 µg, 2 µg, 4 µg, and 8 µg of pHLIP(Var7)-P1AP, the cell proliferation inhibition rates were 3.39%, 5.27%, 14.29%, 22.14%, and 35.69%, respectively. CONCLUSION: PAR1 was highly expressed on the surface of MDA-MB-231 cells. pHLIP(Var7)-P1AP can effectively target MDA-MB-231 cells in an acidic environment and inhibit the growth of MDA-MB-231 cells by inhibiting the signal transduction of PAR1/G protein.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas de Membrana/farmacologia , Oligopeptídeos/farmacologia , Receptor PAR-1/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Concentração de Íons de Hidrogênio , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
11.
Plant Cell Environ ; 43(5): 1192-1211, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990078

RESUMO

Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , DNA de Plantas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Fosforilação , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Alinhamento de Sequência , Glycine max/genética , Glycine max/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
12.
Plant Cell Environ ; 42(1): 145-157, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664126

RESUMO

The plant sucrose nonfermenting kinase 1 (SnRK1) kinases play the central roles in the processes of energy balance, hormone perception, stress resistance, metabolism, growth, and development. However, the functions of these kinases are still elusive. In this study, we used GsSnRK1 of wild soybean as bait to perform library-scale screens by the means of yeast two-hybrid to identify its interacting proteins. The putative interactions were verified by yeast retransformation and ß-galactosidase assays, and the selected interactions were further confirmed in planta by bimolecular fluorescence complementation and biochemical Co-IP assays. Protein phosphorylation analyses were carried out by phos-tag assay and anti-phospho-(Ser/Thr) substrate antibodies. Finally, we obtained 24 GsSnRK1 interactors and several putative substrates that can be categorized into SnRK1 regulatory ß subunit, protein modification, biotic and abiotic stress-related, hormone perception and signalling, gene expression regulation, water and nitrogen transport, metabolism, and unknown proteins. Intriguingly, we first discovered that GsSnRK1 interacted with and phosphorylated the components of soybean nodulation and symbiotic nitrogen fixation. The interactions and potential functions of GsSnRK1 and its associated proteins were extensively discussed and analysed. This work provides plausible clues to elucidate the novel functions of SnRK1 in response to variable environmental, metabolic, and physiological requirements.


Assuntos
Glycine max/enzimologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Imunoprecipitação , Fosforilação , Glycine max/metabolismo , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
13.
Anal Chem ; 90(12): 7371-7376, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29851471

RESUMO

A plasmonic nanoplatform to perform an enzyme-free, naked-eye, and trace discrimination of single-base mutation from fully matched sequence is reported. The nanoplatform showed great potential to enhance catalytic hairpin assembly (CHA) amplification efficiency and biocatalytic activity of hemin/G-quadruplex (DNAzyme). When human immunodeficiency virus (HIV) DNA biomarker was used as the model analyst, a naked-eye detection with high selectivity and high sensitivity down to 10-17 M in whole serum was achieved by observing red-to-blue color change. Single-base mismatch and two-base mismatch were detected at the low concentrations of 10-11 and 10-8 M, respectively. The naked-eye detection based on the enzyme-free plasmonic nanoplatform is expected to have potential applications ranging from quick detection and early diagnostics to point-of-care research.


Assuntos
Pareamento Incorreto de Bases/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Cor , DNA Catalítico , DNA Viral/sangue , Quadruplex G , HIV/genética , Hemina , Humanos , Nanotecnologia/métodos , Sensibilidade e Especificidade
14.
Physiol Plant ; 164(2): 145-162, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29243826

RESUMO

Alkaline stress is a major form of abiotic stress that severely inhibits plant growth and development, thus restricting crop productivity. However, little is known about how plants respond to alkali. In this study, a slow-type anion channel homolog 3 gene, GsSLAH3, was isolated and functionally characterized. Bioinformatics analysis showed that the GsSLAH3 protein contains 10 transmembrane helices. Consistently, GsSLAH3 was found to locate on plasma membrane by transient expression in onion epidermal cells. In wild soybeans, GsSLAH3 expression was induced by NaHCO3 treatment, suggesting its involvement in plant response to alkaline stress. Ectopic expression of GsSLAH3 in yeast increased sensitivity to alkali treatment. Dramatically, overexpression of GsSLAH3 in Arabidopsis thaliana enhanced alkaline tolerance during the germination, seedling and adult stages. More interestingly, we found that transgenic lines also improved plant tolerance to KHCO3 rather than high pH treatment. A nitrate content analysis of Arabidopsis shoots showed that GsSLAH3 overexpressing lines accumulated more NO3- than wild-type. In summary, our data suggest that GsSLAH3 is a positive alkali responsive gene that increases bicarbonate resistance specifically.


Assuntos
Bicarbonatos/farmacologia , Proteínas de Plantas/metabolismo , Compostos de Potássio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
15.
Plant Mol Biol ; 95(3): 253-268, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28884328

RESUMO

KEY MESSAGE: Overexpression of Gshdz4 or GsNAC019 enhanced alkaline tolerance in transgenic Arabidopsis. We proved that Gshdz4 up-regulated both GsNAC019 and GsRD29B but GsNAC019 may repress the GsRD29B expression under alkaline stress. Wild soybean (Glycine soja) has a high tolerance to environmental challenges. It is a model species for dissecting the molecular mechanisms of salt-alkaline stresses. Although many NAC transcription factors play important roles in response to multiple abiotic stresses, such as salt, osmotic and cold, their mode of action in alkaline stress resistance is largely unknown. In our study, we identified a G. soja NAC gene, GsNAC019, which is a homolog of the Arabidopsis AtNAC019 gene. GsNAC019 was highly up-regulated by 50 mM NaHCO3 treatment in the roots of wild soybean. Further investigation showed that a well-characterized transcription factor, Gshdz4 protein, bound the cis-acting element sequences (CAATA/TA), which are located in the promoter of the AtNAC019/GsNAC019 genes. Overexpression of Gshdz4 positively regulated AtNAC019 expression in transgenic Arabidopsis, implying that AtNAC019/GsNAC019 may be the target genes of Gshdz4. GsNAC019 was demonstrated to be a nuclear-localized protein in onion epidermal cells and possessed transactivation activity in yeast cells. Moreover, overexpression of GsNAC019 in Arabidopsis resulted in enhanced tolerance to alkaline stress at the seedling and mature stages, but reduced ABA sensitivity. The closest Arabidopsis homolog mutant plants of Gshdz4, GsNAC019 and GsRD29B containing athb40, atnac019 and atrd29b were sensitive to alkaline stress. Overexpression or the closest Arabidopsis homolog mutant plants of the GsNAC019 gene in Arabidopsis positively or negatively regulated the expression of stress-related genes, such as AHA2, RD29A/B and KIN1. Moreover, this mutation could phenotypically promoted or compromised plant growth under alkaline stress, implying that GsNAC019 may contribute to alkaline stress tolerance via the ABA signal transduction pathway and regulate expression of the downstream stress-related genes.


Assuntos
Ácido Abscísico/farmacologia , Álcalis/farmacologia , Fabaceae/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Bicarbonatos/farmacologia , Fabaceae/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
16.
Plant Mol Biol ; 94(4-5): 509-530, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28681139

RESUMO

KEY MESSAGE: Here we first found that GsERF71, an ERF factor from wild soybean could increase plant alkaline stress tolerance by up-regulating H+-ATPase and by modifing the accumulation of Auxin. Alkaline soils are widely distributed all over the world and greatly limit plant growth and development. In our previous transcriptome analyses, we have identified several ERF (ethylene-responsive factor) genes that responded strongly to bicarbonate stress in the roots of wild soybean G07256 (Glycine soja). In this study, we cloned and functionally characterized one of the genes, GsERF71. When expressed in epidermal cells of onion, GsERF71 localized to the nucleus. It can activate the reporters in yeast cells, and the C-terminus of 170 amino acids is essential for its transactivation activity. Yeast one-hybrid and EMSA assays indicated that GsERF71 specifically binds to the cis-acting elements of the GCC-box, suggesting that GsERF71 may participate in the regulation of transcription of the relevant biotic and abiotic stress-related genes. Furthermore, transgenic Arabidopsis plants overexpressing GsERF71 showed significantly higher tolerance to bicarbonate stress generated by NaHCO3 or KHCO3 than the wild type (WT) plants, i.e., the transgenic plants had greener leaves, longer roots, higher total chlorophyll contents and lower MDA contents. qRT-PCR and rhizosphere acidification assays indicated that the expression level and activity of H+-ATPase (AHA2) were enhanced in the transgenic plants under alkaline stress. Further analysis indicated that the expression of auxin biosynthetic genes and IAA contents were altered to a lower extent in the roots of transgenic plants than WT plants under alkaline stress in a short-term. Together, our data suggest that GsERF71 enhances the tolerance to alkaline stress by up-regulating the expression levels of H+-ATPase and by modifying auxin accumulation in transgenic plants.


Assuntos
Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Concentração de Íons de Hidrogênio , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Glycine max/genética , Fatores de Transcrição/genética
17.
Neurobiol Dis ; 98: 122-136, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27890708

RESUMO

Dominantly inherited mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of familial Parkinson's disease (PD) and LRRK2 polymorphisms are associated with increased risk for idiopathic PD. However, the molecular mechanisms by which these mutations cause PD remain uncertain. In vitro studies indicate that disease-linked mutations in LRRK2 increase LRRK2 kinase activity and LRRK2-mediated cell toxicity. Identifying LRRK2-interacting proteins and determining their effects on LRRK2 are important for understanding LRRK2 function and for delineating the pathophysiological mechanisms of LRRK2 mutations. Here we identified a novel protein, F-box and leucine-rich repeat domain-containing protein 18 (Fbxl18) that physically associates with LRRK2. We demonstrated that Fbxl18 is a component of a Skp1-Cullin1-F-box ubiquitin ligase complex that regulates the abundance of LRRK2 by selectively targeting phosphorylated LRRK2 for ubiquitination and proteasomal degradation. Knockdown of endogenous Fbxl18 stabilized LRRK2 abundance while protein kinase C activation enhanced LRRK2 degradation by Fbxl18. Dephosphorylation of LRRK2 blocked Fbxl18 association with LRRK2. Taken together, we have identified potential mechanisms for LRRK2 regulation by kinase signaling pathways. Furthermore, Fbxl18 prevented caspase activation and cell death caused by LRRK2 and PD-linked mutant LRRK2. This reveals novel targets for developing potential therapies for familial and idiopathic PD.


Assuntos
Morte Celular/fisiologia , Proteínas F-Box/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Proteínas F-Box/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Células NIH 3T3 , Neurônios/metabolismo
18.
BMC Plant Biol ; 16(1): 184, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553065

RESUMO

BACKGROUND: Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown. RESULTS: From our previous transcriptome profile analysis of wild soybean treated by 50 mM NaHCO3, we identified an HD-Zip gene (Gshdz4) which showed high response to the alkaline stress. Our result of qRT-PCR showed that the expression of Gshdz4 was induced by alkaline stress (NaHCO3) in both leaves and roots of wild soybean. Overexpression of Gshdz4 in Arabidopsis resulted in enhanced tolerance to NaHCO3 and KHCO3 during the process of plant growth and development. However, the growths of transgenic and WT plants were not significantly different on the medium with high pH adjusted by KOH, implicating Gshdz4 is only responsible for resisting HCO3 (-) but not high pH. The transgenic plants had less MDA contents but higher POD activities and chlorophyll contents than the WT plants. Moreover, the transcript levels of stress-related genes, such as NADP-ME, H (+) -Ppase, RD29B and KIN1 were increased with greater extent in the transgenic plants than the wild plants. On the contrary, Gshdz4 overexpression lines were much sensitive to osmotic stress at seed germination and stocking stages compared to the wild plants. CONCLUSIONS: We revealed that the important and special roles of Gshdz4 in enhancing bicarbonate tolerance and responding to osmotic stress. It is the first time to elucidate these novel functions of HD-ZIP transcription factors. All the evidences broaden our understanding of functions of HD-Zip family and provide clues for uncovering the mechanisms of high tolerance of wild soybean to saline-alkaline stresses.


Assuntos
Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Fabaceae/genética , Glycine max/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Secas , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Proteínas de Plantas/metabolismo
19.
Planta ; 244(3): 681-98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27125386

RESUMO

MAIN CONCLUSION: This is an original study focus on ERF gene response to alkaline stress. GsERF6 functions as transcription factor and significantly enhanced plant tolerance to bicarbonate (HCO 3 (-) ) in transgenic Arabidopsis . Alkaline stress is one of the most harmful, but little studied environmental factors, which negatively affects plant growth, development and yield. The cause of alkaline stress is mainly due to the damaging consequence of high concentration of the bicarbonate ion, high-pH, and osmotic shock to plants. The AP2/ERF family genes encode plant-specific transcription factors involved in diverse environmental stresses. However, little is known about their physiological functions, especially in alkaline stress responses. In this study, we functionally characterized a novel ERF subfamily gene, GsERF6 from alkaline-tolerant wild soybean (Glycine soja). In wild soybean, GsERF6 was rapidly induced by NaHCO3 treatment, and its overexpression in Arabidopsis enhanced transgenic plant tolerance to NaHCO3 challenge. Interestingly, GsERF6 transgenic lines also displayed increased tolerance to KHCO3 treatment, but not to high pH stress, implicating that GsERF6 may participate specifically in bicarbonate stress responses. We also found that GsERF6 overexpression up-regulated the transcription levels of bicarbonate-stress-inducible genes such as NADP-ME, H (+)-Ppase and H (+)-ATPase, as well as downstream stress-tolerant genes such as RD29A, COR47 and KINI. GsERF6 overexpression and NaHCO3 stress also altered the expression patterns of plant hormone synthesis and hormone-responsive genes. Conjointly, our results suggested that GsERF6 is a positive regulator of plant alkaline stress by increasing bicarbonate ionic resistance specifically, providing a new insight into the regulation of gene expression under alkaline conditions.


Assuntos
Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Glycine max/genética , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/metabolismo , Aclimatação , Arabidopsis/efeitos dos fármacos , Bicarbonatos/toxicidade , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Proteínas de Plantas/genética , Análise de Sequência de DNA , Ativação Transcricional
20.
Genomics ; 105(3): 168-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561352

RESUMO

Genetic research has progressed along with scientific and technological developments. However, it is difficult to identify frequency differences in a particular allele distribution at a single locus. Such differences can be identified by examining the allele combination distribution. We explored different mathematical methods for statistical analyses to assess the association between the genotype and phenotype. We investigated the frequency distributions of alleles, combinations of single-locus genes, and combinations of cross-loci genes at 15 loci using 447 blood samples of 200 normal subjects, 72 patients with chronic obstructive pulmonary resistance, 50 liver cancers, 75 stomach cancers and 50 hematencephalon and identified each population as having a unique gene distribution and that the distribution followed certain rules. The probability of illness followed different rules and had apparent specificity. Differences obtained using statistics of combinations of cross-loci genes are superior to single-locus gene statistics, and combinations of single-locus gene statistics are better than allelic statistics.


Assuntos
Alelos , Doença Crônica , Frequência do Gene , Loci Gênicos , Predisposição Genética para Doença , Hemorragia Cerebral/genética , Genótipo , Humanos , Modelos Genéticos , Neoplasias/genética , Fenótipo , Doença Pulmonar Obstrutiva Crônica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA