Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 20(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33265895

RESUMO

It is important to know the activity interaction parameters between components in melts in the process of metallurgy. However, it's considerably difficult to measure them experimentally, relying still to a large extent on theoretical calculations. In this paper, the first-order activity interaction parameter ( e s j ) of j on sulphur in Fe-based melts at 1873 K is investigated by a calculation model established by combining the Miedema model and Toop-Hillert geometric model as well as considering excess entropy and mixing enthalpy. We consider two strategies, with or without using excess entropy in the calculations. Our results show that: (1) the predicted values are in good agreement with those recommended by Japan Society for Promotion of Science (JSPS); and (2) the agreement is even better when excess entropy is considered in the calculations. In addition, the deviations of our theoretical results from experimental values | e S ( exp ) j - e S ( cal ) j | depend on the element j's locations in the periodic table.

2.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676582

RESUMO

This paper proposes a thermally controlled multifunctional metamaterial absorber with switchable wideband absorption and transmission at the THz band based on resistive film and vanadium dioxide (VO2). The function of the absorber can be adjusted by changing the phase transition characteristics of VO2. When VO2 is in a metallic state, the absorber can achieve wideband absorption with above 90% absorption from 3.31 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles. When VO2 is in an insulating state, the metamaterial acts in transmission mode with a transmission coefficient of up to 61% at 5.15 THz. The transmission region is inside the absorption band, which is very important for practical applications. It has the advantages of having a simple structure, wideband absorption, and switchable absorption/transmission with potential application value in the fields of stealth of communication equipment and radar at the THz band.

3.
Environ Sci Pollut Res Int ; 30(35): 83991-84001, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37351754

RESUMO

In order to evaluate the potential of recovering various valuable elements from vanadiferous titanomagnetite tailing (VTMT), the chemical and process mineralogical characterization of VTMT were investigated in this study by various analytical techniques such as XRF, XRD, optical microscopy, SEM, EDS, and AMICS. It was found that VTMT is a coarser powder in general; about 50% of the particle size is greater than 54.30 µm. The total iron content of the VTMT was 22.40 wt.%, and its TiO2 grade is 14.45 wt.%, even higher than those found in natural ilmenite ores. The majority of iron and titanium were located in ilmenite and hematite; 62.84% of hematite and 90.27% of ilmenite were present in monomeric form. However, there is still a portion of ilmenite and hematite embedded in gangue such as anorthite, diopside, and serpentite. For the recovery of valuable fractions such as Fe and TiO2 from VTMT, a treatment process including ball milling-high-intensity magnetic separation-one roughing and three refining flotation was proposed. Finally, a concentrate with TiO2 grade of 47.31% and total Fe (TFe) grade of 35.44% was produced; TiO2 and TFe had recovery rates of 57.71% and 28.23%, respectively. The recovered product is adequate as a raw material for the production of rutile. This study provides a reference and a new research direction for the recycling and comprehensive utilization of VTMT.


Assuntos
Ferro , Titânio , Ferro/química , Titânio/química
4.
Comput Intell Neurosci ; 2022: 3713279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059390

RESUMO

To enhance the visualization effect of substation high-voltage electrical equipment vulnerability, this study proposes an ISSA-LSTM coupled video overlay algorithm-based substation high-voltage electrical equipment vulnerability visualization and monitoring model. Using the improved α blending algorithm combined with the inverse sampling of video background color, overlaying visible video as well as infrared video, using the improved adaptive weighted two-dimensional principal component analysis (W2DPCA) to fuse the base layer, selecting the detail layer as the final detail layer, obtaining the final fusion frame, and realizing the visualization and monitoring of substation high-voltage electrical equipment vulnerability, and introducing the improved sparrow search algorithm (ISSA) to establish long and short-term memory network prediction model to reduce the prediction error and improve the monitoring accuracy rate. The experimental results show that the monitoring frames obtained by this method can reflect rich details of substation high-voltage electrical equipment, and the texture color and equipment edge contrast are enhanced to facilitate accurate determination of substation high-voltage electrical equipment vulnerability, and the prediction accuracy of ISSA-LSTM model is as high as 99.85%.


Assuntos
Aprendizado Profundo , Algoritmos , Eletricidade , Memória de Curto Prazo , Tecnologia
5.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889599

RESUMO

Based on the tunable conductivity of silicon as a function of incident pump power, a photoexcited switchable dual-function metamaterial absorber for sensing and wideband absorption at the THz band is designed in this paper. The absorber has an absorption peak at 2.08 THz with the absorption up to 99.6% when the conductivity of silicon is 150 Sm-1, which can be used for sensing. The refractive index sensitivity of the absorption peak is up to 456 GHz/RIU. A wideband absorption is generated from 3.4 THz to 4.5 THz with the bandwidth of 1.1 THz as the conductivity σsi = 12,000 Sm-1. The generation mechanism of the sensing absorption peak and wideband absorption is explained by monitoring the surface current, electric, and magnetic field distribution at some absorption frequencies. It has the advantages of being simple and having a high sensitivity, and wideband absorption with wide application prospects on terahertz communication, electromagnetic stealth, and biochemical detection.

6.
Materials (Basel) ; 12(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641991

RESUMO

With an attempt to improve the thermoelectric properties of type I clathrates in the Ba-Ga-Si system, we introduce Cu into the framework of the crystal structure. Single crystals are prepared in Ga-flux and characterized by X-ray diffraction techniques and transport measurements for the structural and thermoelectric properties. Our composition analyses show that only a small amount of Cu is determined in the clathrates. The single crystal X-ray diffraction data refinements confirm that Ga atoms prefer the 6c and 24k sites and avoid the 16i sites in the crystal structure. The small amount of Cu affects the crystal structure by compressing the tetrakaidecahedral cage along the direction perpendicular to the six-atom-ring plane. This could be the reason for the high charge carrier concentration, and low electrical resistivity and Seebeck coefficient. We analyze the principal mechanism for our observation and conclude that the Cu substitution can adjust some subtle details of the structure, maintaining the Zintl rule in the type I clathrates.

7.
ACS Appl Mater Interfaces ; 10(13): 10786-10795, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29528209

RESUMO

In the efforts toward the rapidly increasing demands for high-power application, cathode materials with three-dimensional (3D) architectures have been proposed. Here, we report the construction of the 3D LiAlO2-LiMnPO4/C cathode materials for lithium-ion batteries in an innovation way. The as-prepared 3D active materials LiMnPO4/C and the honeycomb-like Li-ion conductor LiAlO2 framework are used as working electrode directly without additional usage of polymeric binder. The electrochemical performance has been improved significantly due to the special designed core-shell architectures of LiMnPO4/C@LiAlO2. The 3D binder-free electrode exhibits high rate capability as well as superior cycling stability with a capability of ∼105 mAh g-1 and 98.4% capacity retention after 100 cycles at a high discharge rate of 10 C. Such synthesis method adopted in our work can be further extended to other promising candidates and would also inspire new avenues of development of 3D materials for lithium-ion batteries.

8.
Materials (Basel) ; 11(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867040

RESUMO

Thermoelectric materials are actively considered for waste heat recovery applications. To improve the heat to electricity conversion efficiency, fundamental understanding on composition, crystal structure, and interrelation with the thermoelectric properties is necessary. Here, we report the chemical and thermoelectric properties of type-I clathrates Ba 8 Ni 3.8 Si x Ge 42.2 - x (x = 0, 10, 20, 42.2), to show that the Si substitution can retain the low lattice thermal conductivity as in pure Ge-based clathrates by adding defects (cage distortion) scattering and/or alloying effect, and the charge carrier concentration can be optimized and thus the electronic properties can be improved by tailoring the vacancy content. We demonstrate the vacancies in the pure Ge-based compound by Rietveld refinement, and possible vacancies in the quaternary compound by transport property measurements. We also show that, for intrinsic property studies in these compounds with such a complex crystal structure, a heat treatment for as cast alloys is necessary for phase purity and composition homogeneity. The highest Z T value of 0.19 at 550 ° C is reached in the compound with x = 10 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA