Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Phys Rev Lett ; 132(12): 123802, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579232

RESUMO

Ring resonators play a crucial role in optical communication and quantum technology applications. However, these devices lack a simple and intuitive theoretical model to describe their electro-optical modulation. When the resonance frequency is rapidly modulated, the filtering and modulation within a ring resonator become physically intertwined, making it difficult to analyze the complex physical processes involved. We address this by proposing an analytical solution for electro-optic ring modulators based on the concept of a "virtual state." This approach equates a lightwave passing through a dynamic ring modulator to one excited to a virtual state by a cumulative phase and then returning to the real state after exiting the static ring. Our model simplifies the independent analysis of the intertwined physical processes, enhancing its versatility in analyzing various incident signals and modulation formats. Experimental results, including resonant and detuning modulation, align with the numerical simulation of our model. Notably, our findings indicate that the dynamic modulation of the ring resonator under detuning driving approximates phase modulation.

2.
Opt Express ; 30(12): 22135-22142, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224919

RESUMO

Lithium niobate on insulator (LNOI) is a new photonic integrated platform that provides high optical confinement and retains the inherent excellent properties of lithium niobate (LN). Tunable filters are one of the indispensable devices for integrated optics. Here we design and fabricate a thermo-optic (TO) tunable optical filter using two cascaded racetrack microring resonators (MRRs) based on LNOI. The filter shows a narrow and flat top passband with intra band ripple less than 0.3 dB, 3 dB bandwidth of 4.8 GHz and out-of-band rejection of about 35 dB. The insertion loss of the filter is about -14 dB, including grating coupling loss about -6.5 dB and on-chip loss less than -1 dB. The heating power for center wavelength shift of the filter is about 89.4 mW per free spectral range (FSR). Relevant applications of such filters include optical information processing and microwave photonics.

3.
Virol J ; 19(1): 44, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292065

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly refractory cancer associated with increasing mortality, which currently lacks effective treatment options. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that can selectively induce cancer cell apoptosis, and it has been utilized as a cancer gene therapy strategy. The vaccinia virus is a promising strategy for cancer therapy, owing to its direct viral lytic effects, as well as a vehicle to overexpress therapeutic transgenes. METHODS: We constructed a recombinant oncolytic vaccinia viruse (VG9-IL-24) based on vaccinia virus Guang9 (VG9) harboring the IL-24 gene. In vitro, we assessed the replication of VG9-IL-24 in HCC cell lines and normal liver cells and evaluated the cytotoxicity in different cell lines; then, we determined the expression of IL-24 by RT-PCR and ELISA. We examined apoptosis and cell cycle progression in SMMC-7721 cells treated with VG9-IL-24 by flow cytometry. In vivo, we established the SMMC-7721 xenograft mouse model to evaluate the antitumor effects of VG9-IL-24. RESULTS: In vitro, VG9-IL-24 efficiently infected HCC cell lines, but not normal liver cells, and resulted in a high level of IL-24 expression and significant cytotoxicity. Moreover, VG9-IL-24 induced an increase in the proportion of apoptotic cells and blocked the SMMC-7721 cell cycle in the G2/M phase. In vivo, tumor growth was significantly suppressed and the survival was prolonged in VG9-IL-24-treated mice. CONCLUSIONS: Vaccinia virus VG9-mediated gene therapy might be an innovative treatment for cancer with tumor-specific lysis and apoptosis-inducing effects. VG9-IL-24 exhibited enhanced antitumor effects and is a promising candidate for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Apoptose , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Humanos , Interleucinas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vaccinia virus/genética
4.
Chem Eng J ; 429: 132472, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34539224

RESUMO

In this work, we constructed an exonuclease III cleavage reaction-based isothermal amplification of nucleic acids with CRISPR/Cas12a-mediated pH-induced regenerative Electrochemiluminescence (ECL) biosensor for ultrasensitive and specific detection of SARS-CoV-2 nucleic acids for SARS-CoV-2 diagnosis. The triple-stranded nucleic acid in this biosensor has an extreme dependence on pH, which makes our constructed biosensor reproducible. This is essential for effective large-scale screening of SARS-CoV-2 in areas where resources are currently relatively scarce. Using this pH-induced regenerative biosensor, we detected the SARS-CoV-2 RdRp gene with a detection limit of 43.70 aM. In addition, the detection system has good stability and reproducibility, and we expect that this method may provide a potential platform for the diagnosis of COVID-19.

5.
Chem Eng J ; 427: 131686, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400874

RESUMO

Fast and effective detection of epidemics is the key to preventing the spread of diseases. In this work, we constructed a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on entropy-driven and bipedal DNA walker cycle amplification strategies for detection of the RNA-dependent RNA polymerase (RdRp) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The entropy-driven cyclic amplification reaction was started by the SARS-CoV-2 RdRp gene to generate a bandage. The bandage could combine with two other single-stranded S1 and S2 to form a bipedal DNA walker to create the following cycle reaction. After the bipedal DNA walker completed the walking process, the hairpin structures at the top of the DNA tetrahedrons (TDNAs) were removed. Subsequently, the PEI-Ru@Ti3C2@AuNPs-S7 probes were used to combine with the excised hairpin part of TDNAs on the surface of Au-g-C3N4, and the signal change was realized employing electrochemiluminescence resonance energy transfer (ECL-RET). By combining entropy-driven and DNA walker cycle amplification strategy, the ratiometric ECL biosensor exhibited a limit of detection (LOD) as low as 7.8 aM for the SARS-CoV-2 RdRp gene. As a result, detecting the SARS-CoV-2 RdRp gene in human serum still possessed high recovery so that the dual-wavelength ratiometer biosensor could be used in early clinical diagnosis.

6.
Sens Actuators B Chem ; 334: 129592, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33584010

RESUMO

Lectins are highly specific binding proteins for glycoproteins which widely exist in living organisms, playing a vital role in exploring the biological evolution process, such as cellular proliferation, differentiation, carcinogenesis and apoptosis. Therefore, the content monitoring of lectin becomes particularly significant and urgent in the bioanalytical application. In this work, we fabricated an aptasensor, majorly capitalizing the eminent affinity between sialic acid-binding immunoglobulin (Ig)-like lectin 5 (Siglec-5) and nucleic acids aptamer (K19), with nontoxic MoS2@Au nanocomposites as electrochemiluminescence (ECL) emitters based on exonuclease III (Exo III)-powered DNA walker for the bioassays of Siglec-5. The DNA track was constructed on the emitters' surface, providing a reliable platform for the DNA walker's autonomous move. In the assay, the primer DNA in the DNA duplex was replaced by Siglec-5 due to the aptamer interactions and repeatedly released to participate in the movement of the DNA walker, further triggering cascade signal amplification. Finally, our aptasensor indicates significant potential for assays of Siglec-5 with a detection limit of 8.9 pM.

7.
Mikrochim Acta ; 188(7): 226, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106343

RESUMO

A novel nanoparticle-based fluorescence probe was developed for NF-κB transcription factor detection and in situ imaging via steric hindrance. The probe contains gold nanoparticles (AuNPs) to quench fluorescence, and nucleic acids immobilized on the surface of AuNPs to output fluorescence. In the basal state, Cy5 labeled DNA1 folds its long chain into a hairpin structure and quenches fluorescence by forcing the Cy5 fluorophore close to the surface of AuNPs. After the probe enters the cell, the NF-κB transcription factor can bind to the κB site in the DNA duplex of the nucleic acids. The steric hindrance caused by NF-κB leads to the extension of the long chain of DNA1 and the removal of the Cy5 fluorophore from the surface of AuNPs, thereby restoring the fluorescence of the probe. By measuring NF-κB in cell lysis in vitro, the probe obtains a detection limit of 0.38 nM and the linear range from 0.5 to 16 nM. Repeated measurements showed the recovery in the cell nuclear extract was between 93.38 and 109.32%, with relative standard deviation less than 5%. By monitoring the sub-localization of the Cy5 fluorophore in single cell, the probe system can effectively distinguish active NF-κB (nucleus) and inactive NF-κB (cytoplasm) through in situ imaging. The well-designed probe will make up for the shortcomings of the existing technology, and reveal the regulatory role of transcription factors in many disease processes.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo , Humanos
8.
Cancer Cell Int ; 20: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549790

RESUMO

BACKGROUND: Vaccinia viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability of tumor tropism and oncolytic property. Cytosine deaminase (CD), which is derived from bacteria or yeast, can convert a relatively nontoxic prodrug 5-fluorocytosine (5-FC) into the active anticancer drug 5-Fluorouracil (5-FU). Vaccinia virus armed with the prodrug-activator CD gene would result in augmented antitumor effects that combined the effect of vaccinia virus and 5-FU together, and particularly limited the anticancer drug to tumor regions. METHODS: The attenuated vaccinia Tian Tan strain Guang 9 (VG9), with active yeast CD expression and thymidine kinase (TK) deficiency, was successfully constructed. Then, in vitro and in vivo antitumor efficacy of vaccinia VG9-CD plus 5-FC administration was evaluated in colorectal cancer cells. RESULTS: Vaccinia viruses displayed different oncolytic potency in vitro cells, no relationship with whether they were cancer cells or normal cells. In colorectal tumor models, mice treated with vaccinia VG9-TK- showed better tumor remission ability and prolonged survival. Moreover, vaccinia VG9-CD in combination with gavage administration of 5-FC displayed the best antitumor efficacy, especially for the prolongation of survival. CONCLUSIONS: Vaccinia VG9-CD in combination with 5-FC plays combined effect of vaccinia virus and chemotherapy, and becomes a promising virotherapy for cancer.

9.
Int J Mol Sci ; 18(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481322

RESUMO

The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) represent a novel mechanism for osteoblasts and osteoclasts communication, as has been demonstrated in our previous study. Sphingomyelinases catalyze the hydrolysis of sphingomyelin, which leads to increased membrane fluidity and facilitates MV generation. This effect can be inhibited by imipramine, an inhibitor of acid sphingomyelinase (ASM), which is also known as a member of tricyclic antidepressants (TCAs). A recent study has reported that in vitro treatment of imipramine blocked MVs release from glial cells. However, whether imipramine has this effect on osteoblast-derived MVs and whether it is involved in MV generation in vivo is unclear. Here, our investigations found that imipramine slightly reduced the expression of osteoblast differentiation of related genes, but did not impact parathyroid hormone (PTH) regulation for these genes and also did not affect receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation; however, imipramine treatment blocked MVs released from osteoblasts and inhibited MV-induced osteoclast formation. In vivo, mice administrated with imipramine were protected from ovariectomy-induced bone loss as evaluated by various bone structural parameters and serum levels of biochemical markers. Our results suggest that inhibiting the production of MVs containing RANKL in vivo is very important for preventing bone loss.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Micropartículas Derivadas de Células/efeitos dos fármacos , Imipramina/farmacologia , Osteoblastos/metabolismo , Osteoporose Pós-Menopausa/tratamento farmacológico , Animais , Conservadores da Densidade Óssea/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Imipramina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Hormônio Paratireóideo/metabolismo , Ligante RANK/metabolismo
10.
Biochem Biophys Res Commun ; 464(4): 1275-1281, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26220341

RESUMO

The osteoblastic expression of RANKL, which is essential for the communication between osteoblastic cells and osteoclastogenic cells, is stimulated by locally acting or circulating osteotropic cytokines and hormones such as PTH and 1,25-(OH)2-D3 during the bone remodeling process. However, mechanisms those control subcellular trafficking events, membrane expression and extracellular secretion of the newly synthesized RANKL are still not well understood. In our previous study, we have found that the deficiency of osteoblastic Arl6ip5 (ADP-ribosylation-like factor 6 interacting protein 5), an endoplasmic reticulum (ER)-localized protein belonging to the prenylated rab-acceptor-family, enhanced osteoclastogenesis by increasing RANKL transcription in an ER stress dependent signaling. Here we found that over-expression of hemagglutinin (HA)-tagged Arl6ip5 in UAMS32 stromal/osteoblastic cells inhibited osteoclastogenesis, decreased the amount of soluble RANKL in culture supernatant and increased RANKL retention in ER. Moreover, Arl6ip5 bound with RANKL and disturbed the RANKL-OPG complex in UAMS-32 cells. Finally, 1 to 36 amino acid deletion on the NH2 lumen terminus of Arl6ip5 impaired the interaction between Arl6ip5 and RANKL, restored the level of soluble RANKL and the osteoclastogenic ability. These findings indicated that Arl6ip5 was an anti-catabolic factor by binding with RANKL and disturbing its subcellular trafficking in osteoblast.


Assuntos
Proteínas de Transporte/metabolismo , Osteoblastos/metabolismo , Ligante RANK/metabolismo , Frações Subcelulares/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico , Proteínas de Membrana Transportadoras , Camundongos , Osteoblastos/ultraestrutura , Regulação para Cima/fisiologia
11.
Lipids Health Dis ; 13: 66, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24712339

RESUMO

BACKGROUND: γ-tocotrienol (GT3), an analogue of vitamin E, has gained increasing scientific interest recently as it provides significant health benefits. It has been shown that emulsified GT3, after subcutaneous administration, has long-term biological effects. However, whether the effects are due to the increase of GT3 level in the early phase following administration or the persistent functions after accumulation in tissues is unknown. This study was conducted to determine the levels of GT3 in different tissues by high performance liquid chromatography (HPLC) with a fluorescence detector after a single-dose of GT3 with polyethylene glycol (PEG-400) emulsion via subcutaneous injection. Previous studies have explored that GT3 has favorable effects on bone and can inhibit osteoclast formation. To confirm the persistent biological activity of accumulated GT3 in tissues, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) gene expressions, which have an important role in regulating osteoclast formation, were also evaluated in bone tissue on day 1, 3, 7 and 14 after a signal subcutaneous injection of GT3. METHODS: C57BL/6 female mice were administrated GT3 (100 mg/kg body weight) with PEG-400 emulsion by subcutaneous injection. GT3 levels in different tissues were determined by HPLC with a fluorescence detector. Gene expressions were measured by real-time PCR. RESULTS: GT3 predominantly accumulated in adipose and heart tissue, and was maintained at a relatively stable level in bone tissues after a single-dose administration. Accumulated GT3 in bone tissues significantly inhibited the increase in RANKL expression and the decrease in OPG expression induced by db-cAMP. CONCLUSIONS: We investigated the tissue distribution of GT3 with PEG emulsion by subcutaneous administration, which has never been reported so far. Our results suggest that GT3 with PEG emulsion accumulated in tissues is able to carry out a long-term biological effect and has therapeutic value for treating and preventing osteoporosis.


Assuntos
Cromanos/farmacologia , Cromanos/farmacocinética , Emulsões/química , Vitamina E/análogos & derivados , Animais , Cromanos/administração & dosagem , Cromanos/química , Cromatografia Líquida de Alta Pressão , Feminino , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Polietilenoglicóis/química , Ligante RANK/metabolismo , Vitamina E/administração & dosagem , Vitamina E/química , Vitamina E/farmacocinética , Vitamina E/farmacologia
12.
J Ind Microbiol Biotechnol ; 41(6): 997-1006, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24752560

RESUMO

Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity.


Assuntos
Pichia/genética , Albumina Sérica/genética , Somatostatina-28/biossíntese , Animais , Fermentação , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pichia/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Somatostatina-28/genética , Somatostatina-28/farmacologia
13.
Sci Rep ; 12(1): 16885, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207478

RESUMO

Somatostatin, a growth hormone-release inhibiting peptide, exerts antiproliferative and antiangiogenic effects on tumor cells. However, the short half-life of somatostatin limits its application in human therapy, and long-acting somatostatin fusion protein is also limited by its severe terminal degradation. Therefore, oncolytic virus delivery system was introduced to express somatostatin fusion protein and the anti-tumor effects of both somatostatin and oncolytic virus were combined to destroy tumor tissues. Here, a vaccinia VG9/(SST-14)2-HSA recombinant was constructed by replacing somatostatin fusion gene into TK locus of attenuated VG9 strain via homologous recombination. Results showed that vaccinia VG9/(SST-14)2-HSA possessed a combined anti-tumor effect on sstr-positive tumor cells in vitro. In the tumor burden models, BALB/c mice with complete immunity are most suitable for evaluating tumor regression and immune activation. Complete tumor regression was observed in 3 out of 10 mice treated with vaccinia VG9/TK- or VG9/(SST-14)2-HSA, and the survival of all mice in both groups was significantly prolonged. Besides, vaccinia VG9/(SST-14)2-HSA is more effective in prolonging survival than VG9/TK-. Vaccinia VG9/(SST-14)2-HSA exerts a combined anti-tumor efficacy including the oncolytic ability provided by the virus and the anti-tumor effect contributed by (SST-14)2-HSA, which is expected to become a potent therapeutic agent for cancer treatment.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vacínia , Animais , Hormônio do Crescimento/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Vaccinia virus
14.
Psychopharmacology (Berl) ; 239(7): 2263-2275, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35294602

RESUMO

RATIONALE: At present, the research on the prevention of schizophrenia is still in its infancy. Pyrroloquinoline quinone (PQQ) has potential to treat psychological and neurological diseases including schizophrenia. However, the preventive effect of PQQ on schizophrenia remains unclear. OBJECTIVES: In this study, we aimed to examine the preventive effect of supplementation of dietary PQQ from pregnancy or after birth on dizocilpine (MK-801)-induced schizophrenia-like behaviors in mice. RESULTS: Supplementation of dietary PQQ from pregnancy could effectively prevent MK-801-induced weight gain decrease, hyperlocomotion, stereotypical behavior, ataxia, exploratory activity decrease, social interaction disorder, memory deficit, and depression in mice. Supplementation of dietary PQQ after birth could effectively prevent MK-801-induced weight gain decrease, stereotypical behavior, ataxia, and memory deficit in mice. Female mice responded to a greater degree than males in preventing MK-801-induced weight gain decrease in both forms of PQQ supplementation. For mice that began PQQ supplementation after birth, females performed better than males in preventing MK-801-induced ataxia, memory deficit, and depression. For mice that began PQQ supplementation from pregnancy, males performed better than females in preventing MK-801-induced memory deficit. In vitro experiments indicated that PQQ supplementation in the earlier stage of life contributed to the growth of neurons and the development of neurites. CONCLUSIONS: Our current study suggested that PQQ supplementation from pregnancy or postpartum could prevent some schizophrenia-like behaviors induced by MK-801 in mice. Our work supported the potential usage of dietary supplement of PQQ in preventing or alleviating symptoms associated with schizophrenia.


Assuntos
Maleato de Dizocilpina , Esquizofrenia , Animais , Ataxia , Suplementos Nutricionais , Maleato de Dizocilpina/farmacologia , Feminino , Masculino , Transtornos da Memória , Camundongos , Cofator PQQ/farmacologia , Gravidez , Esquizofrenia/induzido quimicamente , Esquizofrenia/prevenção & controle , Aumento de Peso
15.
Talanta ; 236: 122868, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635250

RESUMO

Early diagnosis and timely management of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are the keys to preventing the spread of the epidemic and controlling new infection clues. Therefore, strengthening the surveillance of the epidemic and timely screening and confirming SARS-CoV-2 infection is the primary task. In this work, we first proposed the idea of activating CRISPR-Cas12a activity using double-stranded DNA amplified by a three-dimensional (3D) DNA walker. We applied it to the design of an electrochemiluminescent (ECL) biosensor to detect the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene. We first activated the cleavage activity of CRISPR-Cas12a by amplifying the target DNA into a segment of double-stranded DNA through the amplification effect of a 3D DNA walker. At the same time, we designed an MXene based ECL material: PEI-Ru@Ti3C2@AuNPs, and constructed an ECL biosensor to detect the RdRp gene based on this ECL material as a framework. Activated CRISPR-Cas12a cleaves the single-stranded DNA on the surface of this sensor and causes the ferrocene modified at one end of the DNA to move away from the electrode surface, increasing the ECL signal. The extent of the change in electrochemiluminescence reflects the concentration of the gene to be measured. Using this system, we detected the SARS-CoV-2 RdRp gene with a detection limit of 12.8 aM. This strategy contributes to the rapid and convenient detection of SARS-CoV-2-associated nucleic acids and promotes the clinical application of ECL biosensors based on CRISPR-Cas12a and novel composite materials.


Assuntos
Sistemas CRISPR-Cas , RNA Polimerase Dependente de RNA/isolamento & purificação , SARS-CoV-2 , COVID-19 , DNA , Ouro , Humanos , Nanopartículas Metálicas , RNA Viral
16.
Talanta ; 240: 123207, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998144

RESUMO

In this work, we designed an ECL ratiometric biosensor with a three-stranded Y-type DNA (Y-DNA) probe and induced a hybridization chain reaction (HCR) for the highly sensitive detection of SARS-CoV-2 nucleic acid. The important component of this system is the self-assembled Y-Shaped probe based on three nucleic acids. Y1, Y2, and Y3 can be linked by complementary base pairing to Hairpin1 (H1), Hairpin2 (H2), and Ru modified DNA (Ru1), respectively. H1 and H2 can trigger the HCR reaction when activated by the SARS-CoV-2 RdRp gene and the 5' end of Ru1. The 5' end of Ru1 is modified with the Ru complex, which can produce a strong electrochemiluminescence luminescence signal at 620 nm under an applied voltage. Through the amplification of Y-DNA-induced HCR reaction, Ru1 on the electrode surface gradually increased, the ECL signal at 460 nm was gradually quenched, and the signal at 620 nm was steadily generated. The SARS-CoV-2 RdRp gene can be quantified according to the degree of decrease of ECL signal at 460 nm and the increase of ECL signal at 620 nm. Combining the two signal amplification strategies, this ratiometric ECL biosensor can accurately and efficiently detect the target gene with a detection limit of 59 aM.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Eletroquímicas , Humanos , Medições Luminescentes , Hibridização de Ácido Nucleico , RNA Polimerase Dependente de RNA , SARS-CoV-2
17.
J Steroid Biochem Mol Biol ; 209: 105835, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556581

RESUMO

The problem of multidrug resistance (MDR) presents a major obstacle in the chemotherapy of cancer. The MDR phenotype is often linked to the overexpression of ATP-binding cassette (ABC) transporters, that pumps out and decreased intracellular drug accumulation. γ-Tocotrienol, an unsaturated tocopherol belonging to the vitamin E family, has been shown to reverse the MDR of MCF-7/Adr cell. To reveal the role of γ-tocotrienol-NF-κB-P-gp axis in the reversal process, the expression level of mdr1/P-gp was determined by real-time PCR and western blot, while NF-κB activity was detected by immunofluorescence and NF-κB transcriptional activity reporter assay. Besides, mdr1 promoter activity and P-gp transport capacity were measured with the effect of γ-tocotrienol and NF-κB agonist/antagonist. Results showed that γ-tocotrienol effectively inhibited the expression levels of mdr1 mRNA and P-gp protein. It is demonstrated that γ-tocotrienol also suppressed mdr1 promoter activity and the efflux activity of P-gp. In addition, the activation of NF-κB signaling pathway and the transcriptional activity of NF-κB were both reduced by γ-tocotrienol. Evidences also showed that the NF-κB pathway is really involved in the regulation of the expression and function of mdr1/P-gp. Taken together, we confirmed that γ-tocotrienol reversed the MDR of MCF-7/Adr through the signaling pathway of NF-κB and P-gp.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cromanos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Vitamina E/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , NF-kappa B/genética , Fosforilação , Vitamina E/farmacologia
19.
Biosens Bioelectron ; 194: 113579, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474279

RESUMO

The poor situational awareness about the spreading of the virus especially in the underdeveloped regions calls for novel virus assays of low cost and simple operation. Currently, such assays are exclusively restricted to nucleic acid detection. In this investigation, a virus protein serum assay has been proposed in a one-step and reagent-less route. Specifically, in this assay, the main protease of the virus is targeted by a short probe mimicking its substrate. While the probe-protein interaction brings them together, a fluorescent thiol targeting molecule reacts with the free thiol groups on the target protein near the probe, generating a fluorescence signal proportional to the concentration of the target. This induces an electroactive 2D peptide nano-network on the sensing surface only in the presence of the target protein. The sensitivity of the method is enhanced through potential electrochemical scanning during incubation with serum samples. The successful detection of the virus marker protein in the serum of the infected patients encourages further development of incorporation of this method into clinical practice.


Assuntos
Técnicas Biossensoriais , COVID-19 , Proteases 3C de Coronavírus/isolamento & purificação , Proteínas Sanguíneas , COVID-19/diagnóstico , Proteases 3C de Coronavírus/sangue , Humanos , SARS-CoV-2 , Compostos de Sulfidrila
20.
Biosens Bioelectron ; 176: 112942, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33401144

RESUMO

2019 novel coronavirus (2019-nCoV) with strong contagion in the crowd, has ravaged worldwide and severely impacts the human health and epidemic prevention system, by producing a series of significant stress reactions in the body to induce further cytokine storm. Transcription factors (TFs) served as essential DNA binding proteins play an integral role in regulating cytokine storm, and the detection of it in the human coronavirus environment provides especially valuable approaches to diagnosis and treatment of 2019-nCoV and development of antiviral drugs. In this work, an entropy-driven electrochemiluminescence (ECL) biosensor was constructed for ultra-sensitive bioassay of NF-κB p50. The strategy primarily capitalizing the splendid double-stranded DNA (dsDNA) binding properties of transcription factors, employing GOAu-Ru composite material as ECL emitter, utilizing entropy-driven reactions for signal amplification method, offered a repeatable proposal for TFs detection. In the absence of TFs, the released DNA1 further went in the entropy-driven reaction, contributing to an "ECL off" state. However, in the presence of TFs, the dsDNA avoided being digested, which blocked DNA1 for participating in the entropy-driven reaction, and the system exhibited an "ECL on" state. Most importantly, the ECL bioanalytical method denoted broad application prospects for NF-κB p50 detection with a lower detection limit (9.1 pM).


Assuntos
Técnicas Biossensoriais/métodos , COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Subunidade p50 de NF-kappa B/análise , Técnicas Biossensoriais/estatística & dados numéricos , COVID-19/complicações , Síndrome da Liberação de Citocina/etiologia , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/estatística & dados numéricos , Entropia , Humanos , Limite de Detecção , Medições Luminescentes/métodos , Medições Luminescentes/estatística & dados numéricos , Pandemias , SARS-CoV-2 , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA