Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Care Med ; 46(1): e49-e58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088003

RESUMO

OBJECTIVES: Mechanical ventilation can induce lung fibrosis. This study aimed to investigate whether ventilator-induced lung fibrosis was associated with endothelial-mesenchymal transition and to uncover the underlying mechanisms. DESIGN: Randomized, controlled animal study and cell culture study. SETTING: University research laboratory. SUBJECTS: Adult male Institute of Cancer Research, NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) knockout and wild-type mice. Primary cultured mouse lung vascular endothelial cells. INTERVENTIONS: Institute of Cancer Research, NLRP3 knockout and wild-type mice were subjected to mechanical ventilation (20 mL/kg) for 2 hours. Mouse lung vascular endothelial cells were subjected to cyclic stretch for 24 hours. MEASUREMENTS AND MAIN RESULTS: Mice subjected to mechanical ventilation exhibited increases in collagen deposition, hydroxyproline and type I collagen contents, and transforming growth factor-ß1 in lung tissues. Ventilation-induced lung fibrosis was associated with increased expression of mesenchymal markers (α smooth muscle actin and vimentin), as well as decreased expression of endothelial markers (vascular endothelial-cadherin and CD31). Double immunofluorescence staining showed the colocalization of CD31/α smooth muscle actin, CD31/vimentin, and CD31/fibroblast-specific protein-1 in lung tissues, indicating endothelial-mesenchymal transition formation. Mechanical ventilation also induced NLRP3 inflammasome activation in lung tissues. In vitro direct mechanical stretch of primary mouse lung vascular endothelial cells resulted in similar NLRP3 activation and endothelial-mesenchymal transition formation, which were prevented by NLRP3 knockdown. Furthermore, mechanical stretch-induced endothelial-mesenchymal transition and pulmonary fibrosis were ameliorated in NLRP3-deficient mice as compared to wild-type littermates. CONCLUSIONS: Mechanical stretch may promote endothelial-mesenchymal transition and pulmonary fibrosis through a NLRP3-dependent pathway. The inhibition of endothelial-mesenchymal transition by NLRP3 inactivation may be a viable therapeutic strategy against pulmonary fibrosis associated with mechanical ventilation.


Assuntos
Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Inflamassomos/fisiologia , Pulmão/irrigação sanguínea , Mecanotransdução Celular/fisiologia , Mesoderma/fisiopatologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Fibrose Pulmonar/fisiopatologia , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout
2.
Am J Transl Res ; 9(7): 3270-3281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804545

RESUMO

Mitochondrial dysfunction plays an important role in the pathogenesis of diaphragm weakness during sepsis. Recently, hydrogen sulfide (H2S), a gaseous transmitter endogenously generated by cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), is found to improve mitochondrial function. The present study aimed to examine whether H2S synthases are expressed in the diaphragm, and investigated the effect of H2S donor in sepsis-induced diaphragm weakness and its relationship with mitochondrial function. Immunohistochemical staining of the rat diaphragm revealed that positive immunoreactivity for CBS, CSE as well as 3-MST was predominately localized to muscle cells. Using a cecal ligation and puncture (CLP)-induced sepsis model, it was found that CBS and CSE, but not 3-MST, was significantly down-regulated in the diaphragm at 24 h post-CLP compared with sham group. To determine the effect of H2S on sepsis-induced diaphragm weakness, H2S donor NaHS was intraperitoneally administered 30 min after CLP operation. NaHS at a dose of 50 µmol/kg significantly decreased the mortality in septic rats. CLP markedly reduced diaphragm-specific force generation (force/cross-sectional area and maximal titanic force), which was improved by NaHS treatment. In addition, CLP caused mitochondrial damage in the diaphragm tissues as evidenced by increased mitochondrial superoxide production, decreased mitochondrial membrane potential and ATP production, as well as mitochondrial ultrastructural abnormalities, which was also attenuated by NaHS treatment. These findings indicate that H2S donor may prevent sepsis-induced diaphragm weakness by preservation of mitochondrial function, suggesting that modulation of H2S levels may be considered as a potential therapeutic approach for diaphragm dysfunction during sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA