Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; : e0101624, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248460

RESUMO

The majority of naturally elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs) because they are unable to recognize the Env trimer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC-mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly neutralizing antibodies and even showed activity against HIV-1-infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.IMPORTANCEThe elimination of HIV-1-infected cells remains an important medical goal. Although current antiretroviral therapy decreases viral loads below detection levels, it does not eliminate latently infected cells that form the viral reservoir. Here, we developed a cocktail of non-neutralizing antibodies targeting highly conserved Env regions and combined it with a potent indoline CD4mc. This combination exhibited potent ADCC activity against HIV-1-infected primary CD4 + T cells as well as monocyte-derived macrophages, suggesting its potential utility in decreasing the size of the viral reservoir.

2.
Viruses ; 16(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066329

RESUMO

Natural Killer (NK) cells have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is tightly regulated by the engagement of its inhibitory and activating receptors. The activating receptor CD16 drives ADCC upon binding to the Fc portion of antibodies; NK cell activation is further sustained by the co-engagement of activating receptors NTB-A and 2B4. During HIV-1 infection, Nef and Vpu accessory proteins contribute to ADCC escape by downregulating the ligands of NTB-A and 2B4. HIV-1 also evades ADCC by keeping its envelope glycoproteins (Env) in a "closed" conformation which effectively masks epitopes recognized by non-neutralizing antibodies (nnAbs) which are abundant in the plasma of people living with HIV. To achieve this, the virus uses its accessory proteins Nef and Vpu to downregulate the CD4 receptor, which otherwise interacts with Env and exposes the epitopes recognized by nnAbs. Small CD4-mimetic compounds (CD4mc) have the capacity to expose these epitopes, thus sensitizing infected cells to ADCC. Given the central role of NK cell co-activating receptors NTB-A and 2B4 in Fc-effector functions, we studied their contribution to CD4mc-mediated ADCC. Despite the fact that their ligands are partially downregulated by HIV-1, we found that both co-activating receptors significantly contribute to CD4mc sensitization of HIV-1-infected cells to ADCC.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Células Matadoras Naturais , Família de Moléculas de Sinalização da Ativação Linfocitária , Humanos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , HIV-1/imunologia , Células Matadoras Naturais/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/imunologia , Proteínas Virais Reguladoras e Acessórias/genética , Anticorpos Neutralizantes/imunologia , Proteínas Viroporinas
3.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895270

RESUMO

The majority of naturally-elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs), because they are unable to recognize the Env timer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by Antibody-Dependent Cellular Cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly-neutralizing antibodies and even showed activity against HIV-1 infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.

4.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253431

RESUMO

HIV-1 envelope glycoproteins (Env) from primary HIV-1 isolates typically adopt a pretriggered "closed" conformation that resists to CD4-induced (CD4i) non-neutralizing antibodies (nnAbs) mediating antibody-dependent cellular cytotoxicity (ADCC). CD4-mimetic compounds (CD4mcs) "open-up" Env allowing binding of CD4i nnAbs, thereby sensitizing HIV-1-infected cells to ADCC. Two families of CD4i nnAbs, the anti-cluster A and anti-coreceptor binding site (CoRBS) Abs, are required to mediate ADCC in combination with the indane CD4mc BNM-III-170. Recently, new indoline CD4mcs with improved potency and breadth have been described. Here, we show that the lead indoline CD4mc, CJF-III-288, sensitizes HIV-1-infected cells to ADCC mediated by anti-CoRBS Abs alone, contributing to improved ADCC activity. Structural and conformational analyses reveal that CJF-III-288, in combination with anti-CoRBS Abs, potently stabilizes an asymmetric "open" State-3 Env conformation, This Env conformation orients the anti-CoRBS Ab to improve ADCC activity and therapeutic potential.

5.
Cell Rep Med ; 4(1): 100893, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36584683

RESUMO

COVID-19 convalescent plasmas (CCPs) are chosen for plasma therapy based on neutralizing titers and anti-Spike immunoglobulin levels. However, CCP characteristics that promote SARS-CoV-2 control are complex and incompletely defined. Using an in vivo imaging approach, we demonstrate that CCPs with low neutralizing (ID50 ≤ 1:250), but moderate to high Fc-effector activity, in contrast to those with poor Fc function, delay mortality and/or improve survival of SARS-CoV-2-challenged K18-hACE2 mice. The impact of innate immune cells on CCP efficacy depended on their residual neutralizing activity. Fractionation of a selected CCP revealed that IgG and Ig(M + A) were required during therapy, but the IgG fraction alone sufficed during prophylaxis. Finally, despite reduced neutralization, ancestral SARS-CoV-2-elicited CCPs significantly delayed Delta and Beta-induced mortality suggesting that Fc-effector functions contribute to immunity against VOCs. Thus, Fc activity of CCPs provide a second line of defense when neutralization is compromised and can serve as an important criterion for CCP selection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , COVID-19/terapia , Soroterapia para COVID-19 , Resultado do Tratamento , Imunoglobulina G
6.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376574

RESUMO

Since the beginning of the SARS-CoV-2 pandemic, several variants of concern (VOCs), such as the Alpha, Beta, Gamma, Delta and Omicron variants, have arisen and spread worldwide. Today, the predominant circulating subvariants are sublineages of the Omicron variant, which have more than 30 mutations in their Spike glycoprotein compared to the ancestral strain. The Omicron subvariants were significantly less recognized and neutralized by antibodies from vaccinated individuals. This resulted in a surge in the number of infections, and booster shots were recommended to improve responses against these variants. While most studies mainly measured the neutralizing activity against variants, we and others previously reported that Fc-effector functions, including antibody-dependent cellular cytotoxicity (ADCC), play an important role in humoral responses against SARS-CoV-2. In this study, we analyzed Spike recognition and ADCC activity against several Omicron subvariants by generating cell lines expressing different Omicron subvariant Spikes. We tested these responses in a cohort of donors, who were recently infected or not, before and after a fourth dose of mRNA vaccine. We showed that ADCC activity is less affected than neutralization by the antigenic shift of the tested Omicron subvariant Spikes. Moreover, we found that individuals with a history of recent infection have higher antibody binding and ADCC activity against all Omicron subvariants than people who were not recently infected. With an increase in the number of reinfections, this study helps better understand Fc-effector responses in the context of hybrid immunity.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Citotoxicidade Celular Dependente de Anticorpos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas de mRNA
7.
Cell Rep ; 42(1): 111998, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656710

RESUMO

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas Sintéticas , Mutação , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA