Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 148(10): 2608-2613, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460449

RESUMO

A human cell line of neuroblastic tissue, which was believed to have been lost to science due to its unavailability in public repositories, is revived and reclassified. In the 1970s, a triple set of neuroblastoma (NB) cell lines became available for research as MYCN-amplified vs nonamplified models (CHP-126/-134 and CHP-100, respectively). Confusingly, CHP-100 was used in subsequent years as a model for NB and, since the 1990s, as a model for neuroepithelioma and later as a model for Ewing's sarcoma (ES), which inevitably led to non-reproducible results. A deposit at a bioresource center revealed that globally available stocks of CHP-100 were identical to the prominent NB cell line IMR-32 and CHP-100 was included into the list of misidentified cell lines. Now we report on the rediscovery of an authentic CHP-100 cell line and provide evidence of incorrect classification during establishment. We show that CHP-100 cells carry a t(11;22)(q24;q12) type II EWSR1-FLI1 fusion and identify it as a classic ES. Although the question of whether CHP-100 was a virtual and never existing cell line from the beginning is now clarified, the results of all relevant publications should be considered questionable. Neither the time of the cross-contamination event with IMR-32 is known nor was the final classification as a model for Ewing family of tumors available with an associated short tandem repeat profile. After a long road of errors and confusion, authentic CHP-100 is now characterized as a type II EWSR1-FLI1 fusion model 44 years after its establishment.

2.
ALTEX ; 22(2): 103-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15953965

RESUMO

Cell lines have wide applications as model systems in the medical and pharmaceutical industry. Much drug and chemical testing is now first carried out exhaustively on in vitro systems, reducing the need for complicated and invasive animal experiments. The basis for any research, development or production program involving cell lines is the choice of an authentic cell line. Microsatellites in the human genome that harbour short tandem repeat (STR) DNA markers allow individualisation of established cell lines at the DNA level. Fluorescence polymerase chain reaction amplification of eight highly polymorphic microsatellite STR loci plus gender determination was found to be the best tool to screen the uniqueness of DNA profiles in a fingerprint database. Our results demonstrate that cross-contamination and misidentification remain chronic problems in the use of human continuous cell lines. The combination of rapidly generated DNA types based on single-locus STR and their authentication or individualisation by screening the fingerprint database constitutes a highly reliable and robust method for the identification and verification of cell lines.


Assuntos
DNA/genética , Sequências de Repetição em Tandem/genética , Alternativas aos Testes com Animais/normas , Linhagem Celular , Linhagem Celular Tumoral , Mapeamento Cromossômico , Bases de Dados de Ácidos Nucleicos , Humanos , Cariotipagem , Neoplasias/genética , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA