Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 41(1): e1900521, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31788895

RESUMO

A Pd/Pt-Bu3 catalyst having bulky, electron-rich ligands significantly outperforms conventional "step-growth catalysts" Pd(PPh3 )4 and Pd(Po-Tol3 )3 in the Suzuki polycondensation of the AB-type arylene-based monomers, such as some of the substituted fluorenes, carbazoles, and phenylenes. In the AA+BB polycondensation, Pd/Pt-Bu3 also performs better under homogeneous reaction conditions, in combination with the organic base Et4 NOH. The superior performance of Pd/Pt-Bu3 is discussed in terms of its higher reactivity in the oxidative addition step and inherent advantages of the intramolecular catalyst transfer, which is a key step joining catalytic cycles of the AB-polycondensation. These findings are applied to the synthesis of a carbazole-based copolymer designed for the use as a hole conductor in solution-processed organic light-emitting diodes.


Assuntos
Paládio/química , Fosfinas/química , Carbazóis/química , Catálise , Cinética , Polimerização , Polímeros/síntese química , Polímeros/química
2.
ACS Biomater Sci Eng ; 9(5): 2140-2147, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34519484

RESUMO

In the midst of the COVID-19 pandemic, adaptive solutions are needed to allow us to make fast decisions and take effective sanitation measures, e.g., the fast screening of large groups (employees, passengers, pupils, etc.). Although being reliable, most of the existing SARS-CoV-2 detection methods cannot be integrated into garments to be used on demand. Here, we report an organic field-effect transistor (OFET)-based biosensing device detecting of both SARS-CoV-2 antigens and anti-SARS-CoV-2 antibodies in less than 20 min. The biosensor was produced by functionalizing an intrinsically stretchable and semiconducting triblock copolymer (TBC) film either with the anti-S1 protein antibodies (S1 Abs) or receptor-binding domain (RBD) of the S1 protein, targeting CoV-2-specific RBDs and anti-S1 Abs, respectively. The obtained sensing platform is easy to realize due to the straightforward fabrication of the TBC film and the utilization of the reliable physical adsorption technique for the molecular immobilization. The device demonstrates a high sensitivity of about 19%/dec and a limit of detection (LOD) of 0.36 fg/mL for anti-SARS-Cov-2 antibodies and, at the same time, a sensitivity of 32%/dec and a LOD of 76.61 pg/mL for the virus antigen detection. The TBC used as active layer is soft, has a low modulus of 24 MPa, and can be stretched up to 90% with no crack formation of the film. The TBC is compatible with roll-to-roll printing, potentially enabling the fabrication of low-cost wearable or on-skin diagnostic platforms aiming at point-of-care concepts.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Adsorção , Polímeros
3.
Polymers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946975

RESUMO

Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s-1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer-based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V-1 s-1 at 0.5 mm s-1 to 0.16 cm2 V-1 s-1 at 7 mm s-1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V-1 s-1 at 0.5 mm s-1 to 0.13 cm2 V-1 s-1 at 7 mm s-1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.

4.
Adv Mater ; 33(4): e2005416, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33314375

RESUMO

Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers-semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)-in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2  V-1  s-1 , in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2  V-1  s-1 ). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain.

5.
Chempluschem ; 84(9): 1338-1345, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31944045

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) usually employs highly crystalline small-molecule matrices, and the analyte is interpreted as being co-crystallized with the matrix. We recently showed that semi-crystalline polymers are efficient matrices for the detection of low-molecular-weight compounds (LMWCs) in MALDI MS and MALDI MS Imaging, and are dual-mode, i. e., enabling both positive and negative modes. The matrix performances of two fluorene/napthalene diimide co-polymers P(TNDIT-Fl(C4 C2 )) and P(TNDIT-Fl(C10 C8 )) were investigated and compared. Both are fully amorphous according to XRD measurements, show high relative absorption values at the wavelength of common MALDI lasers (λNd:YAG =355 nm: C4 C2 =73 %; C10 C8 =67 %), and are solution processable. As matrices, they are dual-mode, and enable the detection of LMWCs while being mostly MALDI-silent. Compared with semicrystalline polymer matrices, the amorphous matrices give similar or better signal intensities, thus indicating that analyte inclusion takes place in the amorphous part of the polymer matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA