Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Mol Microbiol ; 91(1): 158-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24283944

RESUMO

Strains of Pseudomonas aeruginosa (PA) isolated from the airways of cystic fibrosis patients constitutively add palmitate to lipid A, the membrane anchor of lipopolysaccharide. The PhoPQ regulated enzyme PagP is responsible for the transfer of palmitate from outer membrane phospholipids to lipid A. This enzyme had previously been identified in many pathogenic Gram-negative bacteria, but in PA had remained elusive, despite abundant evidence that its lipid A contains palmitate. Using a combined genetic and biochemical approach, we identified PA1343 as the PA gene encoding PagP. Although PA1343 lacks obvious primary structural similarity with known PagP enzymes, the ß-barrel tertiary structure with an interior hydrocarbon ruler appears to be conserved. PA PagP transfers palmitate to the 3' position of lipid A, in contrast to the 2 position seen with the enterobacterial PagP. Palmitoylated PA lipid A alters host innate immune responses, including increased resistance to some antimicrobial peptides and an elevated pro-inflammatory response, consistent with the synthesis of a hexa-acylated structure preferentially recognized by the TLR4/MD2 complex. Palmitoylation commonly confers resistance to cationic antimicrobial peptides, however, increased cytokine production resulting in inflammation is not seen with other palmitoylated lipid A, indicating a unique role for this modification in PA pathogenesis.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrose Cística/imunologia , Lipídeo A/metabolismo , Palmitatos/metabolismo , Glicoesfingolipídeos Acídicos , Aciltransferases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Citocinas/metabolismo , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Imunidade Inata , Lipídeo A/imunologia , Lipoilação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Polimixina B/farmacologia , Conformação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo
3.
Front Immunol ; 14: 1242659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869013

RESUMO

Nucleotide-binding oligomerization domain-containing proteins, NOD1 and NOD2, are cytosolic receptors that recognize dipeptides and tripeptides derived from the bacterial cell wall component peptidoglycan (PGN). During the past two decades, studies have revealed several roles for NODs beyond detecting PGN fragments, including activation of an innate immune anti-viral response, NOD-mediated autophagy, and ER stress induced inflammation. Recent studies have also clarified the dynamic regulation of NODs at cellular membranes to generate specific and balanced immune responses. This review will describe how NOD1 and NOD2 detect microbes and cellular stress and detail the molecular mechanisms that regulate activation and signaling while highlighting new evidence and the impact on inflammatory disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Sinalização NOD , Proteína Adaptadora de Sinalização NOD1 , Humanos , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Inflamação , Nucleotídeos/metabolismo
4.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187608

RESUMO

NOD2 is an intracellular innate immune receptor that senses bacterial peptidoglycans. Although soluble in the cytosol, a portion of the protein is associated with the plasma membrane and endosomal compartments for microbial surveillance. Palmitoylation of NOD2 by zDHHC5 promotes its membrane recruitment to drive proinflammatory and antimicrobial responses to pathogenic invasion. A depalmitoylation step by an unknown protein, thioesterase, releases NOD2 from membranes into the cytosol, where the protein can then enter a new cycle of palmitoylation-depalmitoylation. Here, we identify α/ß -hydrolase domain-containing protein 17 isoforms (ABHD17A, 17B, 17C) as the thioesterases responsible for depalmitoylation of NOD2. Inhibiting ABHD17 increased the plasmalemmal localization of both wild-type NOD2 and a subset of hypo-palmitoylated Crohn's disease-associated variants, resulting in increased NF-κB activation and production of pro-inflammatory cytokines in epithelial cells. These results suggest that targeted inhibition of ABHD17 may rescue some Crohn's disease-associated NOD2 variants.

5.
Front Immunol ; 12: 659533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868308

RESUMO

Phagocytosis is a receptor-mediated process used by cells to engulf a wide variety of particulates, including microorganisms and apoptotic cells. Many of the proteins involved in this highly orchestrated process are post-translationally modified with lipids as a means of regulating signal transduction, membrane remodeling, phagosome maturation and other immunomodulatory functions of phagocytes. S-acylation, generally referred to as S-palmitoylation, is the post-translational attachment of fatty acids to a cysteine residue exposed topologically to the cytosol. This modification is reversible due to the intrinsically labile thioester bond between the lipid and sulfur atom of cysteine, and thus lends itself to a variety of regulatory scenarios. Here we present an overview of a growing number of S-acylated proteins known to regulate phagocytosis and phagosome biology in macrophages.


Assuntos
Macrófagos/imunologia , Fagocitose/imunologia , Fagossomos/imunologia , Processamento de Proteína Pós-Traducional , Proteoma/imunologia , Acilação , Animais , Humanos , Macrófagos/metabolismo , Fagossomos/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA