Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 47: 49, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27080859

RESUMO

Equine periodontal disease is a common and painful condition and its severe form, periodontitis, can lead to tooth loss. Its aetiopathogenesis remains poorly understood despite recent increased awareness of this disorder amongst the veterinary profession. Bacteria have been found to be causative agents of the disease in other species, but current understanding of their role in equine periodontitis is extremely limited. The aim of this study was to use high-throughput sequencing to identify the microbiome associated with equine periodontitis and oral health. Subgingival plaque samples from 24 horses with periodontitis and gingival swabs from 24 orally healthy horses were collected. DNA was extracted from samples, the V3-V4 region of the bacterial 16S rRNA gene amplified by PCR and amplicons sequenced using Illumina MiSeq. Data processing was conducted using USEARCH and QIIME. Diversity analyses were performed with PAST v3.02. Linear discriminant analysis effect size (LEfSe) was used to determine differences between the groups. In total, 1308 OTUs were identified and classified into 356 genera or higher taxa. Microbial profiles at health differed significantly from periodontitis, both in their composition (p < 0.0001, F = 12.24; PERMANOVA) and in microbial diversity (p < 0.001; Mann-Whitney test). Samples from healthy horses were less diverse (1.78, SD 0.74; Shannon diversity index) and were dominated by the genera Gemella and Actinobacillus, while the periodontitis group samples showed higher diversity (3.16, SD 0.98) and were dominated by the genera Prevotella and Veillonella. It is concluded that the microbiomes associated with equine oral health and periodontitis are distinct, with the latter displaying greater microbial diversity.


Assuntos
Bactérias/classificação , Doenças dos Cavalos/microbiologia , Microbiota , Boca/microbiologia , Saúde Bucal , Periodontite/veterinária , Animais , Bactérias/genética , DNA Bacteriano/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Cavalos , Masculino , Periodontite/microbiologia , RNA Ribossômico 16S/genética , Escócia
2.
Front Vet Sci ; 8: 646870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124217

RESUMO

Background: Limited objective information is available on the prevalence of non-traumatic equine cheek teeth fractures, the signalment of affected horses, and the clinical features and treatment of these fractures. Objectives: This study aims to document patterns of idiopathic and infundibular caries-related cheek teeth fractures in a referral population and evaluate associations between fracture patterns and horse age, Triadan position of affected teeth, clinical signs, and deemed necessity for treatment. Study Design: A retrospective case review. Methods: The clinical records at Edinburgh University Veterinary School (2010-2018) were examined for the presence of non-traumatic equine cheek teeth fractures. Variations in the frequencies of different fracture patterns were compared between horse ages, Triadan tooth positions, clinical signs, and deemed necessity for treatment. Results: Records of 300 horses with 486 non-traumatic cheek teeth fractures including 77% maxillary and 23% mandibular teeth with a mean of 1.6 (range 1-10) fractured teeth/horse were available. Fracture patterns included maxillary first and second pulp horn ("slab") cheek teeth fractures (n = 171), caries-related infundibular fractures (n = 88), other maxillary teeth fracture patterns (n = 92), mandibular first and second pulp horn ("slab") fractures (n = 44), other mandibular fracture patterns (n = 62), and complete clinical crown loss (n = 29; including 23 maxillary and 6 mandibular teeth). The median age of affected horses ranged from 11 years with maxillary "slab" fractures to 15 years with infundibular caries-related fractures. Triadan 08-10s were the most commonly (86%) fractured maxillary teeth. The Triadan 08 and 09 positions were the most commonly (64%) fractured mandibular teeth. No clinical signs were noted in horses with 48% of the fractured teeth; oral pain/quidding was recorded with 26%, clinical apical infection with 23%, and bitting/headshaking problems with 6%. Treatments included extraction of 40% fractured teeth, extraction of small/loose fragments (10%), and odontoplasty. Stable remnants of 60% of fractured teeth were left in horses without clinical signs. Main Limitations: Long-term follow-up information was not available for all cases. Conclusions: There is increasing recognition of equine non-traumatic cheek teeth fractures, with about half not causing clinical signs. Teeth with apical infection, multiple fractures, or advanced caries require extraction. Other fractured teeth with subclinical endodontic disease may not need exodontia unless they later cause clinical signs.

3.
Front Vet Sci ; 8: 804061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35242831

RESUMO

BACKGROUND: Cheek teeth (second through fourth premolars and first through third molars) diastema is a common and painful equine disorder caused by the absence of effective tight interdental contact between these teeth. Limited objective information is available on the angulation of equine cheek teeth that control dental drift or on mesial or distal equine cheek teeth drift that should normally prevent this disorder. OBJECTIVES: To measure the angulation of the mesial and distal cheek teeth in horses of different ages, quantify age-related cheek teeth mesial and distal dental drift, and measure the cheek teeth row length in horses of different ages. STUDY DESIGN: Retrospective review of computed tomographic images of equine heads. METHODS: Case details and CT images from clinical equine cases that had undergone standing CT head examination were collated.Three sets of measurements were acquired from each head. "Head size" calculated as the distance between the caudal aspect of the orbit and the caudal aspect of the naso-incisive notch was used to standardize measurements in different sized heads. The length of the cheek teeth rows measured from the mesial aspect of the Triadan 06 occlusal surface to the distal aspect of the Triadan 11 occlusal surface. The rostro-caudal (antero-posterior) position and angulation of the mandibular and maxillary Triadan 06 and 11 teeth were measured in relation to reference lines drawn on CT images. RESULTS: Significant mesial drift occurred in the maxillary and mandibular Triadan 11s. Despite their distal angulation, the upper and lower Triadan 06s also drifted mesially. The mean angulation of Triadan 06 and 11 mandibular teeth (17.8 and 26.2°, respectively) was almost double that of maxillary teeth (9.2 and 13.3°, respectively) with both Triadan 11s having greater angulation than the 06s. Cheek teeth angulation only significantly decreased in the mandibular 06s. Cheek teeth arcade lengths decreased with age, but these decreases were not significant. MAIN LIMITATIONS: Limitations include the relatively small sample size. CONCLUSIONS: In the population of horses used for this study, age related mesial drift occurred in both Triadan 06 and 11s, and the angulation of these teeth did not decrease with age in most arcades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA