Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 68: 31-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711994

RESUMO

Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Humanos
2.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669775

RESUMO

Liver metastasis is the primary contributor to the death of patients with colorectal cancer. Despite the overall success of current treatments including targeted therapy, chemotherapy, and immunotherapy combinations in colorectal cancer patients, the prognosis of patients with liver metastasis remains poor. Recent studies have highlighted the importance of the tumour microenvironment and the crosstalk within that determines the fate of circulating tumour cells in distant organs. Understanding the interactions between liver resident cells and tumour cells colonising the liver opens new therapeutic windows for the successful treatment of metastatic colorectal cancer. Here we discuss critical cellular interactions within the tumour microenvironment in primary tumours and in liver metastases that highlight potential therapeutic targets. We also discuss recent therapeutic advances for the treatment of metastatic colorectal cancer.


Assuntos
Neoplasias Colorretais/patologia , Terapia de Alvo Molecular , Microambiente Tumoral , Animais , Humanos , Fígado/patologia , Metástase Neoplásica , Prognóstico
3.
Cell Death Dis ; 15(4): 255, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600086

RESUMO

Excessive STAT3 signalling via gp130, the shared receptor subunit for IL-6 and IL-11, contributes to disease progression and poor survival outcomes in patients with colorectal cancer. Here, we provide evidence that bazedoxifene inhibits tumour growth via direct interaction with the gp130 receptor to suppress IL-6 and IL-11-mediated STAT3 signalling. Additionally, bazedoxifene combined with chemotherapy synergistically reduced cell proliferation and induced apoptosis in patient-derived colon cancer organoids. We elucidated that the primary mechanism of anti-tumour activity conferred by bazedoxifene treatment occurs via pro-apoptotic responses in tumour cells. Co-treatment with bazedoxifene and the SMAC-mimetics, LCL161 or Birinapant, that target the IAP family of proteins, demonstrated increased apoptosis and reduced proliferation in colorectal cancer cells. Our findings provide evidence that bazedoxifene treatment could be combined with SMAC-mimetics and chemotherapy to enhance tumour cell apoptosis in colorectal cancer, where gp130 receptor signalling promotes tumour growth and progression.


Assuntos
Neoplasias do Colo , Indóis , Interleucina-11 , Humanos , Interleucina-11/uso terapêutico , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Receptor gp130 de Citocina/metabolismo , Neoplasias do Colo/tratamento farmacológico , Apoptose
4.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37957015

RESUMO

Deregulation of the Hippo pathway is a driver for cancer progression and treatment resistance. In the context of gastric cancer, YAP1 is a biomarker for poor patient prognosis. Although genomic tumor profiling provides information of Hippo pathway activation, the present study demonstrates that inhibition of Yap1 activity has anti-tumor effects in gastric tumors driven by oncogenic mutations and inflammatory cytokines. We show that Yap1 is a key regulator of cell metabolism, proliferation, and immune responses in normal and neoplastic gastric epithelium. We propose that the Hippo pathway is targetable across gastric cancer subtypes and its therapeutic benefits are likely to be mediated by both cancer cell-intrinsic and -extrinsic mechanisms.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Hippo , Fator de Transcrição STAT3/metabolismo
5.
Cancers (Basel) ; 14(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35053592

RESUMO

Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the "hallmarks of cancer", including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.

6.
Pharmacol Ther ; 211: 107527, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173557

RESUMO

G-protein-coupled receptors (GPCRs) are the largest and most diverse group of cellular membrane receptors identified and characterized. It is estimated that 30 to 50% of marketed drugs target these receptors. The angiotensin II receptor type 1 (AT1R) is a GPCR which signals in response to systemic alterations of the peptide hormone angiotensin II (AngII) in circulation. The enzyme responsible for converting AngI to AngII is the angiotensin-converting enzyme (ACE). Specific inhibitors for the AT1R (more commonly known as AT1R blockers or antagonists) and ACE are well characterized for their effects on the cardiovascular system. Combined with the extensive clinical data available on patient tolerance of AT1R blockers (ARBs) and ACE inhibitors (ACEIs), as well as their non-classical roles in cancer, the notion of repurposing this class of medications as cancer treatment(s) is explored in the current review. Given that AngII-dependent AT1R activity directly regulates angiogenesis, remodeling of vasculature, pro-inflammatory responses, stem cell programming and hematopoiesis, and electrolyte balance; the modulation of these processes with pharmacologically well characterized medications could present a valuable complementary treatment option for cancer patients.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Animais , Reposicionamento de Medicamentos , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA