Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 198: 110672, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361494

RESUMO

Psychrotolerant bacteria play a particularly important role in the remediation of heavy metal in contamination sites at low temperatures. In the current study, a psychrotolerant Ni-resistant bacterial strain, identified as Bacillus cereus D2, was isolated from a nickel mining area in China. The isolated strain could produce a large amount of urease enzyme (194.6 U/mL), grow well in harsh environmental conditions at a temperature of 10 °C, and at a Ni (II) concentration up to 400 mg/L. Also, under the low temperature (10 °C), this strain has been revealed to induce carbonate precipitation (Ni2CO3(OH)2·H2O) through biomineralization for removing the high efficiency of Ni ions (73.47%) from the culture solution. Furthermore, strain D2 could immobilize the DTPA-Ni in contaminated soil under the case of the laboratory condition at 10 °C. These data support that the psychrotolerant bacterial strain D2 may play an important role in remediation technology by eliminating Ni ions from the contaminated soil at low temperatures.


Assuntos
Bacillus cereus/fisiologia , Biodegradação Ambiental , Temperatura Baixa , Níquel/metabolismo , Carbonatos , China , Metais Pesados , Mineração , Níquel/toxicidade , Temperatura , Urease
2.
Funct Plant Biol ; 49(7): 589-599, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339206

RESUMO

Calcium signals serve an important function as secondary messengers between cells in various biological processes due to their robust homeostatic mechanism, maintaining an intracellular free Ca2+ concentration. Plant growth, development, and biotic and abiotic stress are all regulated by Ca2+ signals. Ca2+ binding proteins decode and convey the messages encoded by Ca2+ ions. In the presence of high quantities of Mg2+ and monovalent cations, such sensors bind to Ca2+ ions and modify their conformation in a Ca2+ -dependent manner. Calcium-dependent protein kinases (CPKs), calmodulins (CaMs), and calcineurin B-like proteins are all calcium sensors (CBLs). To transmit Ca2+ signals, CPKs, CBLs, and CaMs interact with target proteins and regulate the expression of their genes. These target proteins may be protein kinases, metabolic enzymes, or cytoskeletal-associated proteins. Beyond its role in plant nutrition as a macroelement and its involvement in the plant cell wall structure, calcium modulates many aspects of development, growth and adaptation to environmental constraints such as drought, salinity and osmotic stresses. This review summarises current knowledge on calcium sensors in plant responses to osmotic stress signalling.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Calmodulina/metabolismo , Secas , Pressão Osmótica , Plantas/genética , Proteínas Quinases/genética
3.
Environ Pollut ; 260: 114051, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32369896

RESUMO

Soil contamination by toxic heavy metals such as copper is a serious problem. In this study, the extracellular polymeric substance (EPS) extracted from Rahnella sp. LRP3 was found with the potential of immobilizing Cu-polluted in soil. The EPS could bond to Cu (II) through functional groups (polysaccharides, amide, proteins, and carboxyl groups), which further developed into the porous sphere with a diameter of 20 µm. Besides, EPS could induce the formation of Cu5(PO4)2(OH)4 crystal by the biomineralization process. Finally, the EPS in the culture solution reduced 89.4 mg/kg of DTPA-Cu content by 78.99% in soil for 10 d under the condition of 25 °C via biomineralization. The results demonstrated that EPS produced by Rahnella sp. LRP3 will be a promising factor in the remediation of Cu contaminated soil.


Assuntos
Biomineralização , Cobre/química , Matriz Extracelular de Substâncias Poliméricas , Rahnella/fisiologia , Solo/química , Rahnella/efeitos dos fármacos
4.
J Hazard Mater ; 368: 133-140, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30669037

RESUMO

Microbially induced phosphate precipitation (MIPP) is an advanced bioremediation technology to immobilize heavy metals in soil. In this study, an indigenous bacterial strain LRP3, identified as Rahnella sp., was isolated from Cu-contaminated dark brown soil in the mining area. Strain LRP3 could produce phytase and alkaline phosphatase to degrade phytic acid, which released soluble phosphate to the bacterial culture. Due to the metabolism of bacterial growth, the pH value of bacterial culture was increased. The minimum inhibitory concentration of Cu (II) to bacterial growth in solution was up to 130 mg/L. The bacterial culture could rapidly precipitate Cu (II) in solution through MIPP. The analysis results of Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transform-Infrared Spectrometer (FTIR), and X-ray Diffraction (XRD) revealed that the precipitate form by bacterial culture was rod-shaped Cu3(OH)3PO4 crystal with a diameter of 10 µm. The bacterial culture decreased the content of DTPA-Cu of 83 mg/kg soil in the soil by 58.2%, 61.5% and 75.8% after 5, 10 and 30 days of incubation, respectively, at the temperature of 25 °C. The results indicate that MIPP-based bioremediation by Rahnella sp. LRP3 is a practical, environmental friendly technology for the cleaning-up of copper-contaminated soil.


Assuntos
Cobre/análise , Fosfatos/química , Rahnella/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Biomineralização , China , Cobre/metabolismo , Fosfatos/metabolismo , Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA