Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Blood ; 139(3): 343-356, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34517413

RESUMO

In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros (AGM) region, where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell RNA sequencing (scRNA-seq) of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation toward HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.


Assuntos
Embrião de Mamíferos/embriologia , Hemangioblastos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Camundongos , Análise de Célula Única , Transcriptoma , Peixe-Zebra
2.
Dev Dyn ; 250(5): 701-716, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33369805

RESUMO

BACKGROUND: In zebrafish, lymphatic endothelial cells (LECs) originate from multiple/several distinct progenitor populations and generate organ-specific lymphatic vasculatures. Cell fate and tissue specificities were determined using a combination of genetically engineered transgenic lines in which the promoter of a LEC-specific gene drives expression of a fluorescent reporter protein. RESULTS: We established a novel zebrafish transgenic line expressing eGFP under the control of part of the zebrafish batf3 promoter (Basic Leucine Zipper ATF-Like Transcription Factor 3). Spatiotemporal examination of Tg(batf3MIN:eGFP) transgenic fish revealed a typical lymphatic expression pattern, which does not perfectly recapitulate the expression pattern of existing LEC transgenic lines. eGFP+ cells constitute a heterogeneous endothelial cell population, which expressed LEC and/or blood endothelial cells (BEC) markers in different tissues. In addition, we characterize the renal eGFP+ cell as a population of interest to study kidney diseases and regeneration. CONCLUSION: Our Tg(batf3MIN:eGFP) reporter zebrafish line provides a useful system to study LEC populations, of which heterogeneity depends on origin of progenitors, tissue environment and physiological conditions. We further developed a novel fish-adapted tissue clearing method, which allows deep imaging and 3D-visualization of vascular and lymphatic networks in the whole organism.


Assuntos
Células Endoteliais , Genes Reporter , Vasos Linfáticos/citologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados
3.
BMC Cancer ; 16: 34, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801902

RESUMO

BACKGROUND: Studies in taxane and/or anthracycline refractory metastatic breast cancer (mBC) patients have shown approximately 30% response rates to irinotecan. Hence, a significant number of patients will experience irinotecan-induced side effects without obtaining any benefit. The aim of this study was to lay the groundwork for development of predictive biomarkers for irinotecan treatment in BC. METHODS: We established BC cell lines with acquired or de novo resistance to SN-38, by exposing the human BC cell lines MCF-7 and MDA-MB-231 to either stepwise increasing concentrations over 6 months or an initial high dose of SN-38 (the active metabolite of irinotecan), respectively. The resistant cell lines were analyzed for cross-resistance to other anti-cancer drugs, global gene expression, growth rates, TOP1 and TOP2A gene copy numbers and protein expression, and inhibition of the breast cancer resistance protein (ABCG2/BCRP) drug efflux pump. RESULTS: We found that the resistant cell lines showed 7-100 fold increased resistance to SN-38 but remained sensitive to docetaxel and the non-camptothecin Top1 inhibitor LMP400. The resistant cell lines were characterized by Top1 down-regulation, changed isoelectric points of Top1 and reduced growth rates. The gene and protein expression of ABCG2/BCRP was up-regulated in the resistant sub-lines and functional assays revealed BCRP as a key mediator of SN-38 resistance. CONCLUSIONS: Based on our preclinical results, we suggest analyzing the predictive value of the BCRP in breast cancer patients scheduled for irinotecan treatment. Moreover, LMP400 should be tested in a clinical setting in breast cancer patients with resistance to irinotecan.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Camptotecina/análogos & derivados , DNA Topoisomerases Tipo I/genética , Proteínas de Neoplasias/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Antígenos de Neoplasias/genética , Neoplasias da Mama/patologia , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , DNA Topoisomerases Tipo I/biossíntese , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Docetaxel , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Dosagem de Genes/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Irinotecano , Células MCF-7 , Proteínas de Neoplasias/biossíntese , Proteínas de Ligação a Poli-ADP-Ribose , Taxoides/administração & dosagem
4.
J Cell Sci ; 126(Pt 22): 5293-304, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24046456

RESUMO

Cadherins are essential in many fundamental processes and assemble at regions of cell-cell contact in large macromolecular complexes named adherens junctions. We have identified flotillin 1 and 2 as new partners of the cadherin complexes. We show that flotillins are localised at cell-cell junctions (CCJs) in a cadherin-dependent manner. Flotillins and cadherins are constitutively associated at the plasma membrane and their colocalisation at CCJ increases with CCJ maturation. Using three-dimensional structured illumination super-resolution microscopy, we found that cadherin and flotillin complexes are associated with F-actin bundles at CCJs. The knockdown of flotillins dramatically affected N- and E-cadherin recruitment at CCJs in mesenchymal and epithelial cell types and perturbed CCJ integrity and functionality. Moreover, we determined that flotillins are required for cadherin association with GM1-containing plasma membrane microdomains. This allows p120 catenin binding to the cadherin complex and its stabilization at CCJs. Altogether, these data demonstrate that flotillin microdomains are required for cadherin stabilization at CCJs and for the formation of functional CCJs.


Assuntos
Caderinas/metabolismo , Junções Intercelulares/genética , Proteínas de Membrana/metabolismo , Caderinas/genética , Cateninas/metabolismo , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Junções Intercelulares/metabolismo , Células MCF-7 , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Proteínas Ativadoras de Esfingolipídeos/metabolismo , delta Catenina
5.
Tumour Biol ; 36(6): 4327-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25596703

RESUMO

The microtubule-targeting taxanes are important in breast cancer therapy, but no predictive biomarkers have yet been identified with sufficient scientific evidence to allow clinical routine use. The purposes of the present study were to develop a cell-culture-based discovery platform for docetaxel resistance and thereby identify key molecular mechanisms and predictive molecular characteristics to docetaxel resistance. Two docetaxel-resistant cell lines, MCF7RES and MDARES, were generated from their respective parental cell lines MCF-7 and MDA-MB-231 by stepwise selection in docetaxel dose increments over 15 months. The cell lines were characterized regarding sensitivity to docetaxel and other chemotherapeutics and subjected to transcriptome-wide mRNA microarray profiling. MCF7RES and MDARES exhibited a biphasic growth inhibition pattern at increasing docetaxel concentrations. Gene expression analysis singled out ABCB1, which encodes permeability glycoprotein (Pgp), as the top upregulated gene in both MCF7RES and MDARES. Functional validation revealed Pgp as a key resistance mediator at low docetaxel concentrations (first-phase response), whereas additional resistance mechanisms appeared to be prominent at higher docetaxel concentrations (second-phase response). Additional resistance mechanisms were indicated by gene expression profiling, including genes in the interferon-inducible protein family in MCF7RES and cancer testis antigen family in MDARES. Also, upregulated expression of various ABC transporters, ECM-associated proteins, and lysosomal proteins was identified in both resistant cell lines. Finally, MCF7RES and MDARES presented with cross-resistance to epirubicin, but only MDARES showed cross-resistance to oxaliplatin. In conclusion, Pgp was identified as a key mediator of resistance to low docetaxel concentrations with other resistance mechanisms prominent at higher docetaxel concentrations. Supporting Pgp upregulation as one major mechanism of taxane resistance and cell-line-specific alterations as another, both MCF7RES and MDARES were cross-resistant to epirubicin (Pgp substrate), but only MDARES was cross-resistant to oxaliplatin (non-Pgp substrate).


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Taxoides/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Permeabilidade da Membrana Celular/genética , Docetaxel , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/biossíntese , Glicoproteínas/genética , Humanos , Células MCF-7 , Análise em Microsséries , Proteínas de Neoplasias/biossíntese , Transdução de Sinais/efeitos dos fármacos
6.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464010

RESUMO

While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.

7.
Tumour Biol ; 34(6): 3839-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23881388

RESUMO

High levels of Tissue Inhibitor of Metalloproteinases-1 (TIMP1) are associated with poor prognosis, reduced response to chemotherapy, and, potentially, also poor response to endocrine therapy in breast cancer patients. Our objective was to further investigate the hypothesis that TIMP1 is associated with endocrine sensitivity. We established a panel of 11 MCF-7 subclones with a wide range of TIMP1 mRNA and protein expression levels. Cells with high expression of TIMP1 versus low TIMP1 displayed significantly reduced sensitivity to the antiestrogen fulvestrant (ICI 182,780, Faslodex®), while TIMP1 levels did not influence the sensitivity to 4-hydroxytamoxifen. An inverse correlation between expression of the progesterone receptor and TIMP1 was found, but TIMP1 levels did not correlate with estrogen receptor levels or growth-promoting effects of estrogen (estradiol, E2). Additionally, the effects of fulvestrant, 4-hydroxytamoxifen, or estrogen on estrogen receptor expression were not associated with TIMP1 levels. Gene expression analyses revealed associations between expression of TIMP1 and genes involved in metabolic pathways, epidermal growth factor receptor 1/cancer signaling pathways, and cell cycle. Gene and protein expression analyses showed no general defects in estrogen receptor signaling except from lack of progesterone receptor expression and estrogen inducibility in clones with high TIMP1. The present study suggests a relation between high expression level of TIMP1 and loss of progesterone receptor expression combined with fulvestrant resistance. Our findings in vitro may have clinical implications as the data suggest that high tumor levels of TIMP1 may be a predictive biomarker for reduced response to fulvestrant.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Receptores de Progesterona/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Células Clonais/metabolismo , Análise por Conglomerados , Regulação para Baixo , Estradiol/farmacologia , Feminino , Fulvestranto , Humanos , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Progesterona/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Transcriptoma/efeitos dos fármacos
8.
Sci Rep ; 13(1): 19825, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963956

RESUMO

The inability to control cell proliferation results in the formation of tumors in many multicellular lineages. Nonetheless, little is known about the extent of conservation of the biological traits and ecological factors that promote or inhibit tumorigenesis across the metazoan tree. Particularly, changes in food availability have been linked to increased cancer incidence in humans, as an outcome of evolutionary mismatch. Here, we apply evolutionary oncology principles to test whether food availability, regardless of the multicellular lineage considered, has an impact on tumorigenesis. We used two phylogenetically unrelated model systems, the cnidarian Hydra oligactis and the fish Danio rerio, to investigate the impact of resource availability on tumor occurrence and progression. Individuals from healthy and tumor-prone lines were placed on four diets that differed in feeding frequency and quantity. For both models, frequent overfeeding favored tumor emergence, while lean diets appeared more protective. In terms of tumor progression, high food availability promoted it, whereas low resources controlled it, but without having a curative effect. We discuss our results in light of current ideas about the possible conservation of basic processes governing cancer in metazoans (including ancestral life history trade-offs at the cell level) and in the framework of evolutionary medicine.


Assuntos
Cnidários , Hydra , Neoplasias , Animais , Humanos , Evolução Biológica , Carcinogênese , Neoplasias/etiologia
9.
Biomater Sci ; 10(14): 3793-3807, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35642617

RESUMO

Three-dimensional bioabsorbable textiles represent a novel technology for the manufacturing of tissue engineering scaffolds. In the present study, 3D bioabsorbable poly(lactic acid) (PLA) spacer fabric scaffolds are fabricated by warp-knitting and their potential for tissue engineering is explored in vitro. Changes in physical properties and mechanical performance with different heat setting treatments are assessed. To characterize the microenvironment experienced by cells in the scaffolds, yarn properties are investigated prior to, and during, hydrolytic degradation. The differences in yarn morphology, thermal properties, infrared spectra, and mechanical properties are investigated and monitored during temperature accelerated in vitro degradation tests in phosphate buffered saline (PBS) solution at 58 °C and pH 7.4 for 55 days. Yarn and textile cytocompatibility are tested to assess the effect of materials employed, manufacturing conditions, post processing and sterilization on cell viability, together with the cytocompatibility of the textile degradation products. Results show that the heat setting process can be used to modify scaffold properties, such as thickness, porosity, pore size and stiffness within the range useful for tissue regeneration. Scaffold degradation rate in physiological conditions is estimated by comparing yarn degradation data with PLA degradation data from literature. This will potentially allow the prediction of scaffold mechanical stability in the long term and thus its suitability for the remodelling of different tissues. Mouse calvaria preosteoblast MC3T3-E1 cells attachment and proliferation are observed on the scaffold over 12 days of in vitro culture by 4',6-diamidino-2-phenylindole (DAPI) fluorescent staining and DNA quantification. The present work shows the potential of spacer fabric scaffolds as a versatile and scalable scaffold fabrication technique, having the ability to create a microenvironment with appropriate physical, mechanical, and degradation properties for 3D tissue engineering. The high control and tunability of spacer fabric properties makes it a promising candidate for the regeneration of different tissues in patient-specific applications.


Assuntos
Poliésteres , Engenharia Tecidual , Animais , Camundongos , Poliésteres/química , Porosidade , Têxteis , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
PLoS One ; 13(1): e0190205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293568

RESUMO

Alzheimer's disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabolic abnormalities occurred at early onset in the 3xtg-AD model compared with their counterparts. Analysis of gene expression in the hypothalamus indicated increased mRNA expression of inflammation- and apoptosis-related genes, as well as decreased gene expression of Agouti-related protein (AgRP) and Melanocortin 4 receptor (MC4R) at 12 weeks of age. Immunofluorescence analysis revealed that pro-opiomelanocortin (POMC) and NPY-expressing neurons decreased at 24 weeks in the 3xtg-AD model. Four weeks of voluntary exercise were sufficient to reverse the gene expression of inflammation and apoptotic markers in the hypothalamus, six weeks of exercise improved glucose metabolism, moreover, 8 weeks of voluntary exercise training attenuated apoptosis and augmented POMC and NPY-expressing neuronal populations in the hypothalamus compared to the control group. Our results indicated that early onset of metabolic abnormalities may contribute to the pathology of AD, which is associated with increased inflammation as well as decreased neuronal population and key neuropeptides in the hypothalamus. Furthermore, early intervention by voluntary exercise normalized hypothalamic inflammation and neurodegeneration as well as glucose metabolism in the 3xtg-AD model. The data, taken as a whole, suggests a hypothalamic-mediated mechanism where exercise prevents the progression of dementia and of Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Modelos Animais de Doenças , Hipotálamo/patologia , Condicionamento Físico Animal , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/metabolismo , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Pró-Opiomelanocortina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
J Endocrinol ; 229(2): 109-22, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26931136

RESUMO

Exercise plays a critical role in regulating glucose homeostasis and body weight. However, the mechanism of exercise on metabolic functions associated with the CNS has not been fully understood. C57BL6 male mice (n=45) were divided into three groups: normal chow diet, high-fat diet (HFD) treatment, and HFD along with voluntary running wheel exercise training for 12 weeks. Metabolic function was examined by the Comprehensive Lab Animal Monitoring System and magnetic resonance imaging; phenotypic analysis included measurements of body weight, food intake, glucose and insulin tolerance tests, as well as insulin and leptin sensitivity studies. By immunohistochemistry, the amount changes in the phosphorylation of signal transducer and activator of transcription 3, neuronal proliferative maker Ki67, apoptosis positive cells as well as pro-opiomelanocortin (POMC)-expressing neurons in the arcuate area of the hypothalamus was identified. We found that 12 weeks of voluntary exercise training partially reduced body weight gain and adiposity induced by an HFD. Insulin and leptin sensitivity were enhanced in the exercise training group verses the HFD group. Furthermore, the HFD-impaired POMC-expressing neuron is remarkably restored in the exercise training group. The restoration of POMC neuron number may be due to neuroprotective effects of exercise on POMC neurons, as evidenced by altered proliferation and apoptosis. In conclusion, our data suggest that voluntary exercise training improves metabolic symptoms induced by HFD, in part through protected POMC-expressing neuron from HFD and enhanced leptin signaling in the hypothalamus that regulates whole-body energy homeostasis.


Assuntos
Hipotálamo/fisiopatologia , Obesidade/fisiopatologia , Condicionamento Físico Animal/fisiologia , Adiposidade , Animais , Proliferação de Células , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Hipotálamo/patologia , Resistência à Insulina , Leptina/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/patologia , Obesidade/terapia , Esforço Físico/fisiologia , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais , Aumento de Peso
13.
Mol Oncol ; 9(6): 1169-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25759163

RESUMO

Current standard treatments for metastatic colorectal cancer (CRC) are based on combination regimens with one of the two chemotherapeutic drugs, irinotecan or oxaliplatin. However, drug resistance frequently limits the clinical efficacy of these therapies. In order to gain new insights into mechanisms associated with chemoresistance, and departing from three distinct CRC cell models, we generated a panel of human colorectal cancer cell lines with acquired resistance to either oxaliplatin or irinotecan. We characterized the resistant cell line variants with regards to their drug resistance profile and transcriptome, and matched our results with datasets generated from relevant clinical material to derive putative resistance biomarkers. We found that the chemoresistant cell line variants had distinctive irinotecan- or oxaliplatin-specific resistance profiles, with non-reciprocal cross-resistance. Furthermore, we could identify several new, as well as some previously described, drug resistance-associated genes for each resistant cell line variant. Each chemoresistant cell line variant acquired a unique set of changes that may represent distinct functional subtypes of chemotherapy resistance. In addition, and given the potential implications for selection of subsequent treatment, we also performed an exploratory analysis, in relevant patient cohorts, of the predictive value of each of the specific genes identified in our cellular models.


Assuntos
Camptotecina/análogos & derivados , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Modelos Biológicos , Compostos Organoplatínicos/farmacologia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Irinotecano , Oxaliplatina
14.
Transplantation ; 73(3): 469-72, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11884947

RESUMO

Erythropoietic protoporphyria (EPP) is characterized by a deficiency of ferrochelatase the final enzyme of the heme biosynthetic pathway. Patients with EPP may overproduce protoporphyrin IX, chiefly in developing erythrocytes. In some, protoporphyrin accumulates and causes toxicity, particularly to the skin and liver. Orthotopic liver transplantation (OLT) treats the severe liver disease that sometimes occurs in EPP; however, it does not correct the underlying metabolic disorder. We recently reported a patient with EPP who was improved with plasmapheresis and i.v. heme-albumin before OLT. Subsequently he developed histological and biochemical evidence of recurrent hepatotoxicity from protoporphyrin in the graft liver. We now report successful treatment of the patient with additional plasmapheresis and heme-albumin with improvement of hepatic histological and biochemical abnormalities. We conclude that plasmapheresis and heme-albumin are of benefit in EPP complicated by hepatotoxicity before and after liver transplantation.


Assuntos
Albuminas/administração & dosagem , Heme/administração & dosagem , Transplante de Fígado/efeitos adversos , Plasmaferese , Porfiria Hepatoeritropoética/terapia , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Porfiria Hepatoeritropoética/etiologia
15.
PLoS One ; 7(3): e32309, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22442665

RESUMO

Intestinal cytochrome P450 subclass 1A1 (CYP1A1) contributes to a metabolic "shield" protecting the host from ingested carcinogens such as polycyclic aromatic hydrocarbons (PAH). The expression of CYP1 (including CYP1A2 and CYP1B1) is considered to depend solely on a heterodimeric transcription factor consisting of the arylhydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT). So far, no interference has been noted between the regulation of CYP1 and the activation of Toll-like receptor 2 (TLR2), which modulates the inflammatory response to bacterial cell wall components in immune cells and enterocytes. Here we report that intestinal CYP1A1 is silenced in TLR2-deficient mice, even when under exposure to the carcinogenic PAH benzo[a]pyrene (BaP). In contrast, hepatic CYP1A1 was moderately induced in TLR2-deficient mice without restoring their ability to clear BaP from systemic circulation, as present in wild-type animals. After feeding of BaP for 21 days, only TLR2(-/-) mice, but not their wild type littermates developed polyps in the colon. Gene expressions and protein concentrations of AHR and ARNT in the intestine did not differ between the genotypes. In conclusion, the presence of ligands for TLR2 of bacterial origin seems to be crucial for detoxication of luminal carcinogens by CYP1A1 in the intestine. This unprecedented finding indicates a complex interplay between the immune system of the host and intestinal bacteria with detoxication mechanisms. This highlights the relevance of intestinal microbiota when trying to unravel pathways present in mammals and opens new perspectives for research in human health.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Citocromo P-450 CYP1A1/metabolismo , Intestinos/enzimologia , Receptor 2 Toll-Like/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzo(a)pireno/farmacologia , Carcinógenos/farmacologia , Pólipos do Colo/enzimologia , Pólipos do Colo/genética , Pólipos do Colo/patologia , Citocromo P-450 CYP1A1/genética , Humanos , Inativação Metabólica/genética , Intestinos/microbiologia , Fígado/enzimologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptor 2 Toll-Like/genética
17.
Dig Dis Sci ; 50(7): 1304-11, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16047477

RESUMO

We investigated whether celecoxib augments the protective effect of polyethylene glycol (PEG) on colonic aberrant crypt foci (ACF) and tumor formation in F344 rats treated with azoxymethane (AOM). Three groups of rats received AOM: I (AOM alone), II (PEG), and III (PEG/celecoxib). PEG reduced the mean number of total ACF per colon from 190 to 141 (P < 0.05; 26% reduction) and > or = 4-crypt ACF from 95 to 58 (P < 0.01; 39%). Group III rats had a greater proportion of their ACF distally; whereas transverse colon ACF were reduced approximately 50%, distal ACF were reduced by only approximately 8% (P < 0.05). Of 13 large bowel tumors, 8 were in Group I, 4 in Group II, and 1 in Group III rats (P = 0.02). Thus in AOM-treated rats celecoxib appeared to enhance the PEG-induced reduction in colonic tumor formation, and in transverse but not distal or whole-colon ACF.


Assuntos
Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/prevenção & controle , Inibidores de Ciclo-Oxigenase/farmacologia , Polietilenoglicóis/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Azoximetano , Bromodesoxiuridina , Celecoxib , Neoplasias do Colo/induzido quimicamente , Citoproteção , Sinergismo Farmacológico , Feminino , Imuno-Histoquímica/métodos , Masculino , Ratos , Ratos Endogâmicos F344 , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA