Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 110(1): e16102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371783

RESUMO

PREMISE: Root-sprouting (RS) is an evolutionarily independent alternative to axillary stem branching for a plant to attain its architecture. Root-sprouting plants are better adapted to disturbance than non-RS plants, and their vigor is frequently boosted by biomass removal. Nevertheless, RS plants are rarer than plants that are not root-sprouters, possibly because they must overcome developmental barriers such as intrinsic phytohormonal balance or because RS ability is conditioned by injury to the plant body. The objective of this study was to identify whether phytohormones or injury enable RS. METHODS: In a greenhouse experiment, growth variables, root respiration, and phytohormones were analyzed in two closely related clonal herbs that differ in RS ability (spontaneously RS Inula britannica and rhizomatous non-RS I. salicina) with and without severe biomass removal. RESULTS: As previously reported, I. britannica is a root-sprouter, but injury did not boost its RS ability. Root respiration did not differ between the two species and decreased continuously with time irrespectively of injury, but their phytohormone profiles differed significantly. In RS species, the auxins-to-cytokinins ratio was low, and injury further decreased it. CONCLUSIONS: This first attempt to test drivers behind different plant growth forms suggests that intrinsic phytohormone regulation, especially the auxins-to-cytokinins ratio, might be behind RS ability. Injury, causing a phytohormonal imbalance, seems to be less important in spontaneously RS species than expected for RS species in general.


Assuntos
Citocininas , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Citocininas/fisiologia , Ácidos Indolacéticos , Desenvolvimento Vegetal , Plantas , Raízes de Plantas
2.
Front Plant Sci ; 12: 628167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177973

RESUMO

The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.

3.
PLoS One ; 10(7): e0132683, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26172952

RESUMO

Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.


Assuntos
Anexinas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Anexinas/genética , Clorofila/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Estresse Oxidativo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico , Xantofilas/metabolismo
4.
J Exp Bot ; 58(11): 3047-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17761730

RESUMO

The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.


Assuntos
Ácido Abscísico/farmacologia , Aminoácidos Cíclicos/farmacologia , Beta vulgaris/metabolismo , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/metabolismo , Aminoácido Oxirredutases/metabolismo , Aminoácidos Cíclicos/metabolismo , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/crescimento & desenvolvimento , Ciclopentanos/farmacologia , Citocininas/farmacologia , Etilenos/farmacologia , Frutas/anatomia & histologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Giberelinas/farmacologia , Ácidos Indolacéticos/farmacologia , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Sementes/anatomia & histologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA