Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neural Plast ; 2015: 602356, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171253

RESUMO

In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic "ectopic" sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca(2+)-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.


Assuntos
Cerebelo/fisiologia , Neuroglia/fisiologia , Plasticidade Neuronal , Células de Purkinje/fisiologia , Transmissão Sináptica , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Ratos Wistar
2.
Neural Plast ; 2015: 765792, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339509

RESUMO

The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.


Assuntos
Rede Nervosa/fisiologia , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Rede Nervosa/citologia
3.
J Physiol ; 592(7): 1493-503, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24421351

RESUMO

In the rat cerebellar molecular layer, spillover of glutamate between parallel fibre synapses can lead to activation of perisynaptic receptors that mediate short- and long-term plasticity. This effect is greatest when clusters of fibres are stimulated at high frequencies, suggesting that glutamate clearance mechanisms must be overwhelmed before spillover can occur. However, parallel fibres can also release transmitter directly into the extracellular space, from 'ectopic' release sites. Ectopic transmission activates AMPA receptors on the Bergmann glial cell processes that envelop parallel fibre synapses, but the possible contribution of this extrasynaptic release to intersynaptic communication has not been explored. We exploited long-term depression of ectopic transmission, and selective pharmacology, to investigate the impact of these release sites on the time course of Purkinje neuron excitatory postsynaptic currents (EPSCs). Depletion of ectopic release pools by activity-dependent long-term depression decreased EPSC decay time, revealing a 'late' current that is present when fibres are stimulated at low frequencies. This effect was enhanced when glutamate transporters were inhibited, and reduced when extracellular diffusion was impeded. Blockade of N-type Ca(2+) channels inhibited ectopic transmission to Bergmann glia and decreased EPSC decay time. Similarly, perfusion of the Ca(2+) chelator EGTA-AM into the slice progressively eliminated ectopic transmission to glia and decreased EPSC decay time with closely similar time courses. Collectively, this evidence suggests that ectopically released glutamate contributes to spillover transmission, and that ectopic release therefore degrades the spatial precision of synapses that fire infrequently, and may make them more prone to exhibit plasticity.


Assuntos
Ácido Glutâmico/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio Tipo N/metabolismo , Quelantes/farmacologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Feminino , Ácido Glutâmico/efeitos dos fármacos , Depressão Sináptica de Longo Prazo , Masculino , Neuroglia/metabolismo , Células de Purkinje/efeitos dos fármacos , Ratos Wistar , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
4.
Nat Commun ; 14(1): 5285, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648685

RESUMO

Dynamin-1 is a large GTPase with an obligatory role in synaptic vesicle endocytosis at mammalian nerve terminals. Heterozygous missense mutations in the dynamin-1 gene (DNM1) cause a novel form of epileptic encephalopathy, with pathogenic mutations clustering within regions required for its essential GTPase activity. We reveal the most prevalent pathogenic DNM1 mutation, R237W, disrupts dynamin-1 enzyme activity and endocytosis when overexpressed in central neurons. To determine how this mutation impacted cell, circuit and behavioural function, we generated a mouse carrying the R237W mutation. Neurons from heterozygous mice display dysfunctional endocytosis, in addition to altered excitatory neurotransmission and seizure-like phenotypes. Importantly, these phenotypes are corrected at the cell, circuit and in vivo level by the drug, BMS-204352, which accelerates endocytosis. Here, we demonstrate a credible link between dysfunctional endocytosis and epileptic encephalopathy, and importantly reveal that synaptic vesicle recycling may be a viable therapeutic target for monogenic intractable epilepsies.


Assuntos
Epilepsia Resistente a Medicamentos , Dinamina I , Animais , Camundongos , Dinamina I/genética , Convulsões/genética , Modelos Animais de Doenças , Transporte Biológico , Mamíferos
5.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931449

RESUMO

Synaptic vesicle (SV) release probability (Pr), determines the steady state and plastic control of neurotransmitter release. However, how diversity in SV composition arises and regulates the Pr of individual SVs is not understood. We found that modulation of the copy number of the noncanonical vesicular SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), vesicle-associated membrane protein 4 (VAMP4), on SVs is key for regulating Pr. Mechanistically, this is underpinned by its reduced ability to form an efficient SNARE complex with canonical plasma membrane SNAREs. VAMP4 has unusually high synaptic turnover and is selectively sorted to endolysosomes during activity-dependent bulk endocytosis. Disruption of endolysosomal trafficking and function markedly increased the abundance of VAMP4 in the SV pool and inhibited SV fusion. Together, our results unravel a new mechanism for generating SV heterogeneity and control of Pr through coupling of SV recycling to a major clearing system that regulates protein homeostasis.

6.
Front Cell Neurosci ; 13: 312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417358

RESUMO

Here, we describe a cost-effective setup for targeted photoconversion of fluorescent signals into electron dense ones. This approach has offered invaluable insights in the morphology and function of fine neuronal structures. The technique relies on the localized oxidation of diaminobenzidine (DAB) mediated by excited fluorophores. This paper includes a detailed description of how to build a simple photoconversion setup that can increase reliability and throughput of this well-established technique. The system described here, is particularly well-suited for thick neuronal tissue, where light penetration and oxygen diffusion may be limiting DAB oxidation. To demonstrate the system, we use Correlative Light and Electron Microscopy (CLEM) to visualize functionally-labeled individual synaptic vesicles released onto an identified layer 5 neuron in an acute cortical slice. The setup significantly simplifies the photoconversion workflow, increasing the depth of photoillumination, improving the targeting of the region of interest and reducing the time required to process each individual sample. We have tested this setup extensively for the photoconversion of FM 1-43FX and Lucifer Yellow both excited at 473 nm. In principle, the system can be adapted to any dye or nanoparticle able to oxidize DAB when excited by a specific wavelength of light.

7.
PLoS One ; 13(11): e0207642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427940

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0200937.].

8.
PLoS One ; 13(7): e0200937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024947

RESUMO

At parallel fibre terminals in the cerebellar cortex, glutamate released outside of the active zone can activate AMPA receptors on juxtaposed Bergmann glial cell processes. This process is termed "ectopic" release, and allows for directed transmission to astroglial cells that is functionally independent of synaptic transmission to postsynaptic Purkinje neurons. The location of ectopic sites in presynaptic terminals is uncertain. Functional evidence suggests that stimulation of parallel fibres at 1 Hz exhausts ectopic transmission due to a failure to rapidly recycle vesicles to the ectopic pool, and so would predict a loss of vesicles in the near vicinity of extrasynaptic glial processes. In this study we used this stimulation protocol to investigate whether the distribution of vesicles within the presynaptic terminal is altered after suppression of ectopic release. Stimulation at 1 Hz had only a minor impact on the distribution of vesicles in presynaptic terminals when analysed with electron microscopy. Vesicle number and terminal size were unaffected by 1 Hz stimulation, but the relative abundance of vesicles in close proximity to the active zone was marginally reduced. In contrast, the fraction of vesicles facing glial membranes was unchanged after suppression of ectopic transmission. 1 Hz stimulation also resulted in a small but statistically-significant increase in the distance between glial membrane and presynaptic terminal, suggesting withdrawal of glial membranes from synapses is detectable in ultrastructural anatomy within minutes. These results raise doubts about the location of ectopic release sites, but indicate that neuron-glial association varies on a dynamic time scale.


Assuntos
Comunicação Celular/fisiologia , Cerebelo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Células de Purkinje/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Células Cultivadas , Cerebelo/citologia , Estimulação Elétrica , Ácido Glutâmico/metabolismo , Células de Purkinje/citologia , Ratos , Receptores de AMPA/metabolismo
9.
PLoS One ; 10(5): e0125974, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933382

RESUMO

BACKGROUND: Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites-a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. METHODS: Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. KEY RESULTS: Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine--intracellular calcium release, and cAMP signalling--had no impact on these effects. CONCLUSIONS: We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections.


Assuntos
Cafeína/farmacologia , Cálcio/metabolismo , Cerebelo/metabolismo , AMP Cíclico/metabolismo , Terminações Nervosas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Adenilil Ciclases/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Terminações Nervosas/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Concentração Osmolar , Inibidores de Fosfodiesterase/farmacologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA