RESUMO
Different chemical reagents were used to study the tertiary structure of yeast tRNASer, a tRNA with a large variable region: ethylnitrosourea, which alkylates the phosphate groups; dimethylsulphate, which methylates N-7 of guanosine and N-3 of cytosine; and diethylpyrocarbonate, which modifies N-7 of adenine. The non-reactivity of N-3 of cytidine 47:1, 47:6, 47:7 and 47:8 and the reactivity of cytidine 47:3 confirms the existence of a variable stem of four base-pairs and a short variable loop of three residues. For the N-7 positions in purines, accessible residues are G1, G10, Gm18, G19, G30, I34, G35, A36, i6A37, G45, G47, G47:5, G47:9 and G73. The protection of N-7 atoms of residues G9, G15, A21, A22 and G47:9 reflects the tertiary folding. Strong phosphate protection was observed for P8 to P11, P20:1 to P22, P48 to P50 and for P59 and P60. A model was built on a PS300 graphic system on the basis of these data and its stereochemistry refined. While trying to keep most tertiary interactions, we adapted the tertiary folding of the known structures of tRNAAsp and tRNAPhe to the present sequence and solution data. The resulting model has the variable arm not far from the plane of the common L-shaped structure. A generalization of this model to other tRNAs with large variable regions is discussed.
Assuntos
RNA de Transferência Aminoácido-Específico , RNA de Transferência de Serina , Saccharomyces cerevisiae/metabolismo , Adenina/metabolismo , Alquilação , Citidina/metabolismo , Etilnitrosoureia , Guanosina/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfatos/metabolismo , RNA de Transferência de Ácido Aspártico , RNA de Transferência de Fenilalanina , SoluçõesRESUMO
The crystal structures of glycyl-tRNA synthetase (GlyRS) from Thermus thermophilus, a homodimeric class II enzyme, were determined in the enzyme-substrate and enzyme-product states corresponding to the first step of aminoacylation. GlyRS was cocrystallized with glycine and ATP, which were transformed by the enzyme into glycyl-adenylate and thus gave the enzyme-product complex. To trap the enzyme-substrate complex, the enzyme was combined with the glycine analog ethanolamine and ATP. The ligands are bound in fixed orientations in the substrate-binding pocket of the N-terminal active site domain, which contains the classical class II aminoacyl-tRNA synthetase (aaRS) fold. Since glycine does not possess a side-chain, much of the specificity of the enzyme is directed toward excluding any additional atoms beyond the alpha-carbon atom. Several carboxylate residues of GlyRS line the glycine binding pocket; two of them interact directly with the alpha-ammonium group. In addition, the enzyme utilizes the acidic character of the pro-L alpha-hydrogen atom by contacting it via a glutamate carboxylic oxygen atom. A guanidino eta-nitrogen atom of the class II aaRS-conserved motif 2 arginine interacts with the substrate carbonyl oxygen atom. These features serve to attract the small amino acid substrate into the active site and to position it in the correct orientation. GlyRS uses class II-conserved residues to interact with the ATP and the adenosine-phosphate moiety of glycyl-adenylate. On the basis of this similarity, we propose that GlyRS utilizes the same general mechanism as that employed by other class II aminoacyl-tRNA synthetases.
Assuntos
Glicina-tRNA Ligase/metabolismo , Glicina/metabolismo , Thermus thermophilus/enzimologia , Aminoacilação de RNA de Transferência , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Elétrons , Etanolamina/metabolismo , Glicina/química , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/isolamento & purificação , Ligação de Hidrogênio , Magnésio/química , Magnésio/metabolismo , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , Especificidade por SubstratoRESUMO
The crystallographic structure of the synthetic oligoribonucleotide, U(UA)6A, has been solved at 2.25 A resolution. The crystallographic refinement permitted the identification of 91 solvent molecules, with a final agreement factor of 13%. The molecule is a dimer of 14 base-pairs and shows the typical features of an A-type helix. However, the presence of two kinks causes a divergence from a straight helix. The observed deformation, which is stabilized by a few hydrogen bonds in the crystal packing, could be due to the relatively high (35 degrees C) temperature of crystallization. The complete analysis of the structure is presented. It includes the stacking geometries, the backbone conformation and the solvation.
Assuntos
Oligorribonucleotídeos , RNA/ultraestrutura , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Solubilidade , Difração de Raios XRESUMO
Abstract The crystal structures of histidyl- (HisRS) and threonyl-tRNA synthetase (ThrRS) from E. coli and glycyl-tRNA synthetase (GlyRS) from T. thermophilus, all homodimeric class IIa enzymes, were determined in enzyme-substrate and enzyme-product states corresponding to the two steps of aminoacylation. HisRS was complexed with the histidine analog histidinol plus ATP and with histidyl-adenylate, while GlyRS was complexed with ATP and with glycyl-adenylate; these complexes represent the enzyme-substrate and enzyme-product states of the first step of aminoacylation, i.e. the amino acid activation. In both enzymes the ligands occupy the substrate-binding pocket of the N-terminal active site domain, which contains the classical class II aminoacyl-tRNA synthetase fold. HisRS interacts in the same fashion with the histidine, adenosine and α-phosphate moieties of the substrates and intermediate, and GlyRS interacts in the same way with the adenosine and α-phosphate moieties in both states. In addition to the amino acid recognition, there is one key mechanistic difference between the two enzymes: HisRS uses an arginine whereas GlyRS employs a magnesium ion to catalyze the activation of the amino acid. ThrRS was complexed with its cognate tRNA and ATP, which represents the enzyme-substrate state of the second step of aminoacylation, i.e. the transfer of the amino acid to the 3'-terminal ribose of the tRNA. All three enzymes utilize class II conserved residues to interact with the adenosine-phosphate. ThrRS binds tRNA(Thr) so that the acceptor stem enters the active site pocket above the adenylate, with the 3'-terminal OH positioned to pick up the amino acid, and the anticodon loop interacts with the C-terminal domain whose fold is shared by all three enzymes. We can thus extend the principles of tRNA binding to the other two enzymes.
Assuntos
Aminoacil-tRNA Sintetases , Aminoacilação , Trifosfato de Adenosina/química , Aminoacil-tRNA Sintetases/química , Anticódon , Sítios de Ligação , Domínio Catalítico , Escherichia coli/metabolismo , Dados de Sequência MolecularRESUMO
Yeast tRNA(Ser) is a member of the class II tRNAs, whose characteristic is the presence of an extended variable loop. This additional structural feature raises questions about the recognition of these class II tRNAs by their cognate synthetase and the possibility of the involvement of the extra arm in the recognition process. A footprinting study of yeast tRNA(Ser) complexed with its cognate synthetase, yeast seryl-tRNA synthetase (an alpha 2 dimer), was undertaken. Chemical (ethylnitrosourea) and enzymatic (nucleases S1 and V1) probes were used in the experiments. A map of the contact points between the tRNA and the synthetase was established and results were analyzed with respect to a three-dimensional model of yeast tRNA(Ser). Regions in close vicinity with the synthetase are clustered on one face of tRNA. The extra arm, which is strongly protected from chemical modifications, appears as an essential part of the contact area. The anticodon triplet and a large part of the anticodon arm are, in contrast, still accessible to the probes when the complex is formed. These results are discussed in the context of the recognition of tRNAs in the aminoacylation reaction.
Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Aminoacil-RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Serina-tRNA Ligase/antagonistas & inibidores , Anticódon , Autorradiografia , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Endorribonucleases , Etilnitrosoureia , Genes Fúngicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mapeamento de Peptídeos , Aminoacil-RNA de Transferência/análise , Aminoacil-RNA de Transferência/metabolismo , Saccharomyces cerevisiae/enzimologia , Serina-tRNA Ligase/análise , Endonucleases Específicas para DNA e RNA de Cadeia SimplesRESUMO
RNA is involved in many biological functions, ranging from information storage and transfer to the catalysis of reactions involving both nucleic acids and proteins. Previous crystallographic studies on RNA oligomeric chains provide only averaged structures or information limited in resolution. The oligomer [U(U-A)6A]2 was chosen for the study of protein-RNA interactions in viruses. Its size and base composition mimic portions of the genomic RNA in alfalfa mosaic virus that bind to the amino terminus of the viral subunit. The actual sequence was designed to guarantee the formation of a single species of duplex and to facilitate the production of the pure oligomer in large quantities. The molecular structure, derived from the 2.25 A resolution X-ray diffraction data, allows the most detailed analysis of an A-RNA helix reported to date. Two kinks are observed that divide the duplex into three blocks, each close to a canonical A-helical conformation. A few intermolecular hydrogen bonds involving 2'-hydroxyl groups stabilize this peculiar conformation of the RNA, which may be related to the temperature used for the crystallization (35 degrees C). The structure demonstrates both the plasticity of the RNA molecule and the role of the 2'-hydroxyl groups in intermolecular interactions.
Assuntos
RNA , Sequência de Bases , Modelos Moleculares , Difração de Raios XRESUMO
Accurate translation of the genetic code depends on the ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids. In order to investigate the basis of amino acid recognition and to understand the role played by the zinc ion present in the active site of threonyl-tRNA synthetase, we have determined the crystal structures of complexes of an active truncated form of the enzyme with a threonyl adenylate analog or threonine. The zinc ion is directly involved in threonine recognition, forming a pentacoordinate intermediate with both the amino group and the side chain hydroxyl. Amino acid activation experiments reveal that the enzyme shows no activation of isosteric valine, and activates serine at a rate 1,000-fold less than that of cognate threonine. This study demonstrates that the zinc ion is neither strictly catalytic nor structural and suggests how the zinc ion ensures that only amino acids that possess a hydroxyl group attached to the beta-position are activated.
Assuntos
Escherichia coli/enzimologia , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/metabolismo , Treonina/metabolismo , Zinco/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Deleção de Sequência/genética , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Treonina/análogos & derivados , Treonina/química , Treonina-tRNA Ligase/genética , Valina-tRNA Ligase/química , Valina-tRNA Ligase/metabolismoRESUMO
Overexpressed dimeric E. coli aspartyl-tRNA synthetase (AspRS) has been crystallized in its free state and complexed with yeast tRNA(Asp). Triclinic crystals of the enzyme alone (a = 104.4, b = 107.4, c = 135.0 A, alpha = 102.9, beta = 101.0, gamma = 106.3 degrees ), have been grown using ammonium sulfate as the precipitant and monoclinic crystals (a = 127.1, b = 163.6, c = 140.1 A, beta = 111.7 degrees ), space group C2, have been grown using polyethylene glycol 6000. They diffract to 2.8 and 3.0 A, respectively. Crystals of the heterologous complex between E. coli AspRS and yeast tRNA have been obtained using ammonium sulfate as the precipitant and 2-propanol as the nucleation agent. They belong to the monoclinic space group P2(1) (a = 76.2, b = 227.3, c = 82.3 A, beta = 111.7 degrees ) and diffract to 2.7 A.
RESUMO
E. coli threonyl-tRNA synthetase (ThrRS) is a class II enzyme that represses the translation of its own mRNA. We report the crystal structure at 2.9 A resolution of the complex between tRNA(Thr) and ThrRS, whose structural features reveal novel strategies for providing specificity in tRNA selection. These include an amino-terminal domain containing a novel protein fold that makes minor groove contacts with the tRNA acceptor stem. The enzyme induces a large deformation of the anticodon loop, resulting in an interaction between two adjacent anticodon bases, which accounts for their prominent role in tRNA identity and translational regulation. A zinc ion found in the active site is implicated in amino acid recognition/discrimination.