Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37097839

RESUMO

Methanogenic archaea are a diverse, polyphyletic group of strictly anaerobic prokaryotes capable of producing methane as their primary metabolic product. It has been over three decades since minimal standards for their taxonomic description have been proposed. In light of advancements in technology and amendments in systematic microbiology, revision of the older criteria for taxonomic description is essential. Most of the previously recommended minimum standards regarding phenotypic characterization of pure cultures are maintained. Electron microscopy and chemotaxonomic methods like whole-cell protein and lipid analysis are desirable but not required. Because of advancements in DNA sequencing technologies, obtaining a complete or draft whole genome sequence for type strains and its deposition in a public database are now mandatory. Genomic data should be used for rigorous comparison to close relatives using overall genome related indices such as average nucleotide identity and digital DNA-DNA hybridization. Phylogenetic analysis of the 16S rRNA gene is also required and can be supplemented by phylogenies of the mcrA gene and phylogenomic analysis using multiple conserved, single-copy marker genes. Additionally, it is now established that culture purity is not essential for studying prokaryotes, and description of Candidatus methanogenic taxa using single-cell or metagenomics along with other appropriate criteria is a viable alternative. The revisions to the minimal criteria proposed here by the members of the Subcommittee on the Taxonomy of Methanogenic Archaea of the International Committee on Systematics of Prokaryotes should allow for rigorous yet practical taxonomic description of these important and diverse microbes.


Assuntos
Archaea , Euryarchaeota , Archaea/genética , Filogenia , Análise de Sequência de DNA/métodos , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/genética , Ácidos Graxos/química , Euryarchaeota/genética , Metano/metabolismo
2.
Extremophiles ; 24(1): 71-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31535211

RESUMO

Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0-3.5% of sequences and were predominately Thermus thermophilus. 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.


Assuntos
Fontes Termais , Thermus , DNA Bacteriano , Ecossistema , Nitratos , Filogenia , RNA Ribossômico 16S
3.
Nature ; 499(7459): 431-7, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23851394

RESUMO

Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Metagenômica , Filogenia , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ecossistema , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Célula Única
4.
Environ Microbiol ; 20(2): 734-754, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29235710

RESUMO

Marine Group II archaea are widely distributed in global oceans and dominate the total archaeal community within the upper euphotic zone of temperate waters. However, factors controlling the distribution of MGII are poorly delineated and the physiology and ecological functions of these still-uncultured organisms remain elusive. In this study, we investigated the planktonic MGII associated with particles and in free-living forms in the Pearl River Estuary (PRE) over a 10-month period. We detected high abundance of particle-associated MGII in PRE (up to ∼108 16S rRNA gene copies/l), which was around 10-fold higher than the free-living MGII in the same region, and an order of magnitude higher than previously reported in other marine environments. 10‰ salinity appeared to be a threshold value for these MGII because MGII abundance decreased sharply below it. Above 10‰ salinity, the abundance of MGII on the particles was positively correlated with phototrophs and MGII in the surface water was negatively correlated with irradiance. However, the abundances of those free-living MGII showed positive correlations with salinity and temperature, suggesting the different physiological characteristics between particle-attached and free-living MGIIs. A nearly completely assembled metagenome, MGIIa_P, was recovered using metagenome binning methods. Compared with the other two MGII genomes from surface ocean, MGIIa_P contained higher proportions of glycoside hydrolases, indicating the ability of MGIIa_P to hydrolyse glycosidic bonds in complex sugars in PRE. MGIIa_P is the first assembled MGII metagenome containing a catalase gene, which might be involved in scavenging reactive oxygen species generated by the abundant phototrophs in the eutrophic PRE. Our study presented the widespread and high abundance of MGII in the water columns of PRE, and characterized the determinant abiotic factors affecting their distribution. Their association with heterotrophs, preference for particles and resourceful metabolic traits indicate MGII might play a significant role in metabolising organic matters in the PRE and other temperate estuarine systems.


Assuntos
Adaptação Fisiológica/fisiologia , Archaea/genética , Archaea/metabolismo , Plâncton/crescimento & desenvolvimento , Rios/microbiologia , Archaea/classificação , Archaea/isolamento & purificação , China , Ecologia , Estuários , Metagenoma/genética , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/microbiologia
7.
Extremophiles ; 22(6): 983-991, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219948

RESUMO

Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0-2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (≤ 97.01%), digital DNA-DNA hybridization (≤ 32.7%), OrthoANI (≤ 87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by ß-galactosidase and ß-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (= CGMCC 1.13590T = KCTC XXX).


Assuntos
Arseniatos/metabolismo , Thermus/genética , Tiossulfatos/metabolismo , Respiração Celular , Genoma Bacteriano , Fontes Termais/microbiologia , Metabolismo dos Lipídeos , Oxirredução , Termotolerância , Thermus/isolamento & purificação , Thermus/metabolismo
8.
Appl Environ Microbiol ; 82(4): 992-1003, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637598

RESUMO

The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.


Assuntos
Biologia Computacional/métodos , Genoma Microbiano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fontes Termais/microbiologia , Metagenômica/métodos , China , Aprendizado de Máquina , Estados Unidos
9.
Int J Syst Evol Microbiol ; 65(12): 4769-4775, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26419502

RESUMO

An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.50-7.75 with an optimum at pH 7.25, with 0.5-8 % oxygen with an optimum at 1-2 % and with ≤ 200 mM NaCl. The doubling time under optimal growth conditions was 1.3 h, with a final mean cell density of 6.2 ± 0.5 × 107 cells ml- 1. Non-motile, rod-shaped cells 1.4-2.4 × 0.4-0.6 µm in size occurred singly or in pairs. The major cellular fatty acids (>5 % of the total) were C20 : 1ω9c, C18 : 0, C16 : 0 and C20 : 0. Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other species of the genus Thermocrinis, but determination of 16S rRNA gene sequence similarity ( ≤ 97.10 %) and in silico estimated DNA-DNA hybridization values ( ≤ 18.4 %) with the type strains of recognized Thermocrinis species indicate that the novel strain is distinct from described species. Based on phenotypic, genotypic and phylogenetic characteristics, a novel species, Thermocrinis jamiesonii sp. nov., is proposed, with GBS1T ( = JCM 19133T = DSM 27162T) as the type strain.


Assuntos
Bactérias/classificação , Fontes Termais/microbiologia , Filogenia , Tiossulfatos/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Nevada , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Mol Biol Evol ; 30(7): 1653-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23608703

RESUMO

Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa.


Assuntos
Bactérias/enzimologia , DNA Polimerase Dirigida por DNA/genética , Transferência Genética Horizontal/genética , Vírus/enzimologia , Alveolados/enzimologia , Alveolados/genética , Sequência de Aminoácidos , Animais , Bactérias/genética , Biologia Computacional , Fontes Termais/virologia , Filogenia , Homologia de Sequência de Aminoácidos , Vírus/genética
11.
Int J Syst Evol Microbiol ; 64(Pt 6): 2119-2127, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24676733

RESUMO

A thermophilic, filamentous, heterotrophic bacterium, designated strain JAD2(T), a member of an as-yet uncultivated lineage that is present and sometimes abundant in some hot springs worldwide, was isolated from sediment of Great Boiling Spring in Nevada, USA. Cells had a mean diameter of 0.3 µm and length of 4.0 µm, and formed filaments that typically ranged in length from 20 to 200 µm. Filaments were negative for the Gram stain reaction, spores were not formed and motility was not observed. The optimum temperature for growth was 72.5-75 °C, with a range of 67.5-75 °C, and the optimum pH for growth was 6.75, with a range of pH 6.5-7.75. Peptone, tryptone or yeast extract were able to support growth when supplemented with vitamins, but no growth was observed using a variety of defined organic substrates. Strain JAD2(T) was microaerophilic and facultatively anaerobic, with optimal growth at 1% (v/v) O2 and an upper limit of 8% O2. The major cellular fatty acids (>5%) were C(16 : 0), C(19 : 0), C(18 : 0), C(20 : 0) and C(19 : 1). The genomic DNA G+C content was 69.3 mol%. Phylogenetic and phylogenomic analyses using sequences of the 16S rRNA gene and other conserved genes placed JAD2(T) within the phylum Chloroflexi, but not within any existing class in this phylum. These results indicate that strain JAD2(T) is the first cultivated representative of a novel lineage within the phylum Chloroflexi, for which we propose the name Thermoflexus hugenholtzii gen. nov., sp. nov., within Thermoflexia classis nov., Thermoflexales ord. nov. and Thermoflexaceae fam. nov. The type strain of Thermoflexus hugenholtzii is JAD2(T) ( = JCM 19131(T) = CCTCC AB-2014030(T)).


Assuntos
Chloroflexi/classificação , Fontes Termais/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Temperatura Alta , Dados de Sequência Molecular , Nevada , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Extremophiles ; 18(5): 865-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25113821

RESUMO

Despite >130 years of microbial cultivation studies, many microorganisms remain resistant to traditional cultivation approaches, including numerous candidate phyla of bacteria and archaea. Unraveling the mysteries of these candidate phyla is a grand challenge in microbiology and is especially important in habitats where they are abundant, including some extreme environments and low-energy ecosystems. Over the past decade, parallel advances in DNA amplification, DNA sequencing and computing have enabled rapid progress on this problem, particularly through metagenomics and single-cell genomics. Although each approach suffers limitations, metagenomics and single-cell genomics are particularly powerful when combined synergistically. Studies focused on extreme environments have revealed the first substantial genomic information for several candidate phyla, encompassing putative acidophiles (Parvarchaeota), halophiles (Nanohaloarchaeota), thermophiles (Acetothermia, Aigarchaeota, Atribacteria, Calescamantes, Korarchaeota, and Fervidibacteria), and piezophiles (Gracilibacteria). These data have enabled insights into the biology of these organisms, including catabolic and anabolic potential, molecular adaptations to life in extreme environments, unique genomic features such as stop codon reassignments, and predictions about cell ultrastructure. In addition, the rapid expansion of genomic coverage enabled by these studies continues to yield insights into the early diversification of microbial lineages and the relationships within and between the phyla of Bacteria and Archaea. In the next 5 years, the genomic foliage within the tree of life will continue to grow and the study of yet-uncultivated candidate phyla will firmly transition into the post-genomic era.


Assuntos
Adaptação Fisiológica , Metagenoma , Microbiota/genética , Metagenômica , Análise de Célula Única
13.
Microbiome ; 12(1): 123, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971798

RESUMO

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Assuntos
Carbono , Campos de Petróleo e Gás , Filogenia , Carbono/metabolismo , Campos de Petróleo e Gás/microbiologia , RNA Ribossômico 16S/genética , Genoma Bacteriano , Alcanos/metabolismo
14.
Appl Environ Microbiol ; 79(10): 3306-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475616

RESUMO

Microrespirometry showed that several organic and inorganic electron donors stimulated oxygen consumption in two ∼80°C springs. Sediment and planktonic communities were structurally and functionally distinct, and quantitative PCR revealed catabolically distinct subpopulations of Thermocrinis. This study suggests that a variety of chemolithotrophic metabolisms operate simultaneously in these springs.


Assuntos
Biota , Metabolismo Energético , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Microbiologia da Água , Bactérias Aeróbias/genética , Bactérias Aeróbias/crescimento & desenvolvimento , Bactérias Aeróbias/metabolismo , Técnicas Biossensoriais/métodos , Transporte de Elétrons , Genes de RNAr , Hidrogênio/metabolismo , Oxigênio/metabolismo , RNA Bacteriano/genética , Thermoproteales/genética , Thermoproteales/crescimento & desenvolvimento , Thermoproteales/metabolismo , Estados Unidos
15.
Int J Syst Evol Microbiol ; 63(Pt 12): 4675-4682, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23950149

RESUMO

Several closely related, thermophilic and cellulolytic bacterial strains, designated JKG1(T), JKG2, JKG3, JKG4 and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1(T) had cells of diameter 0.7-0.9 µm and length ~2.0 µm that formed non-branched, multicellular filaments reaching >300 µm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45-65 °C, with an optimum of 55 °C. The pH range for growth was pH 5.6-9.0, with an optimum of pH 7.5. JKG1(T) grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, CM-cellulose, filter paper, microcrystalline cellulose, xylan, starch, Casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class Chloroflexia, but distant from other cultivated members, with the highest sequence identity of 82.5 % to Roseiflexus castenholzii. The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5 %) were C18 : 0, anteiso-C17 : 0, iso-C18 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and C17 : 0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose and xylose. Morphological, phylogenetic and chemotaxonomic results suggest that JKG1(T) is representative of a new lineage within the class Chloroflexia, which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov. The type strain of Kallotenue papyrolyticum gen. nov., sp. nov. is JKG1(T) ( = DSM 26889(T) = JCM 19132(T)).


Assuntos
Celulose/metabolismo , Chloroflexi/classificação , Fontes Termais/microbiologia , Filogenia , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Nevada , Peptidoglicano/química , RNA Ribossômico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Antonie Van Leeuwenhoek ; 104(1): 71-82, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23632917

RESUMO

Culture-independent and enrichment techniques, with an emphasis on members of the Archaea, were used to determine the composition and structure of microbial communities inhabiting microbial mats in the source pools of two geothermal springs near the towns of Arzakan and Jermuk in Armenia. Amplification of small-subunit rRNA genes using "universal" primers followed by pyrosequencing (pyrotags) revealed highly diverse microbial communities in both springs, with >99 % of pyrosequences corresponding to members of the domain Bacteria. The spring in Arzakan was colonized by a photosynthetic mat dominated by Cyanobacteria, in addition to Proteobacteria, Bacteroidetes, Chloroflexi, Spirochaeta and a diversity of other Bacteria. The spring in Jermuk was colonized by phylotypes related to sulfur, iron, and hydrogen chemolithotrophs in the Betaproteobacteria and Epsilonproteobacteria, along with a diversity of other Bacteria. Analysis of near full-length small subunit rRNA genes amplified using Archaea-specific primers showed that both springs are inhabited by a diversity of methanogens, including Methanomicrobiales and Methanosarcinales and relatives of Methanomassiliicoccus luminyensis, close relatives of the ammonia-oxidizing archaeon (AOA) "Candidatus Nitrososphaera gargensis", and the yet-uncultivated Miscellaneous Crenarchaeotal Group and Deep Hydrothermal Vent Crenarchaeota group 1. Methanogenic enrichments confirmed the predicted physiological diversity, revealing methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis at 45 and 55 °C, but not 65 °C. This is one of only a few studies combining cultivation-independent and -dependent approaches to study archaea in moderate-temperature (37-73 °C) terrestrial geothermal environments and suggests important roles for methanogenic archaea and AOA in the carbon and nitrogen biogeochemical cycles in these environments.


Assuntos
Archaea/isolamento & purificação , Fontes Termais/microbiologia , Consórcios Microbianos , Microbiologia da Água , Amônia/metabolismo , Archaea/classificação , Archaea/efeitos dos fármacos , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Armênia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Biodiversidade , DNA Bacteriano/genética , Concentração de Íons de Hidrogênio , Metano/metabolismo , Consórcios Microbianos/genética , Dados de Sequência Molecular , Oxirredução , Fenótipo , Filogenia , RNA Bacteriano/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Temperatura
17.
Proc Natl Acad Sci U S A ; 107(24): 11050-5, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20534465

RESUMO

In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.


Assuntos
Proteínas Arqueais/metabolismo , Transporte de Elétrons , Mathanococcus/metabolismo , Oxirredutases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas Arqueais/genética , Sequência de Bases , Primers do DNA/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Mathanococcus/genética , Mathanococcus/crescimento & desenvolvimento , Modelos Biológicos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Complexos Multiproteicos , Oxirredutases/genética
18.
ISME J ; 17(10): 1649-1659, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452096

RESUMO

The preeminent source of biological methane on Earth is methyl coenzyme M reductase (Mcr)-dependent archaeal methanogenesis. A growing body of evidence suggests a diversity of archaea possess Mcr, although experimental validation of hypothesized methane metabolisms has been missing. Here, we provide evidence of a functional Mcr-based methanogenesis pathway in a novel member of the family Archaeoglobaceae, designated Methanoglobus nevadensis, which we enriched from a terrestrial hot spring on the polysaccharide xyloglucan. Our incubation assays demonstrate methane production that is highly sensitive to the Mcr inhibitor bromoethanesulfonate, stimulated by xyloglucan and xyloglucan-derived sugars, concomitant with the consumption of molecular hydrogen, and causing a deuterium fractionation in methane characteristic of hydrogenotrophic and methylotrophic methanogens. Combined with the recovery and analysis of a high-quality M. nevadensis metagenome-assembled genome encoding a divergent Mcr and diverse potential electron and carbon transfer pathways, our observations suggest methanogenesis in M. nevadensis occurs via Mcr and is fueled by the consumption of cross-fed byproducts of xyloglucan fermentation mediated by other community members. Phylogenetic analysis shows close affiliation of the M. nevadensis Mcr with those from Korarchaeota, Nezhaarchaeota, Verstraetearchaeota, and other Archaeoglobales that are divergent from well-characterized Mcr. We propose these archaea likely also use functional Mcr complexes to generate methane on the basis of our experimental validation in M. nevadensis. Thus, divergent Mcr-encoding archaea may be underestimated sources of biological methane in terrestrial and marine hydrothermal environments.


Assuntos
Archaeoglobales , Fontes Termais , Filogenia , Archaeoglobales/metabolismo , Metano/metabolismo , Archaea
19.
ISME J ; 17(11): 2112-2122, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741957

RESUMO

High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.


Assuntos
Fontes Termais , Fontes Termais/química , Filogenia , Aminoácidos , Ácido Aspártico , Isótopos , DNA , Acetatos
20.
Nat Commun ; 13(1): 3773, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773279

RESUMO

Trace metals have been an important ingredient for life throughout Earth's history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae. Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles.


Assuntos
Archaea , Tungstênio , Anaerobiose , Archaea/metabolismo , Metagenoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA