Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(12): 127401, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978070

RESUMO

The control of the valley degree of freedom lies at the core of interest in monolayer transition metal dichalcogenides, where specific valley-spin excitation can be created using circularly polarized light. Measurement and manipulation of the valley index has also been achieved, but mainly with purely optical methods. Here, in monolayer MoS_{2}, we identify a response to the valley polarization of excitons in the longitudinal electrical transport when the valley degeneracy is broken by an out-of-plane magnetic field B_{z}. The spin information is also simultaneously determined with spin-sensitive contacts. In the presence of B_{z}, a significant modulation of the photocurrent is observed as a function of the circular polarization state of the excitation. We attribute this effect to unbalanced transport of valley-polarized trions induced by the opposite Zeeman shifts of two (K and K^{'}) valleys. Our interpretation is supported by the contrasting behavior in bilayer MoS_{2}, as well as the observed doping and spatial dependence of the valley photocurrent.

2.
J Am Chem Soc ; 136(5): 1718-21, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24422494

RESUMO

We use organic cations to template the solution-state assembly of corrugated lead halide layers in bulk crystalline materials. These layered hybrids emit radiation across the entire visible spectrum upon ultraviolet excitation. They are promising as single-source white-light phosphors for use with ultraviolet light-emitting diodes in solid-state lighting devices. The broadband emission provides high color rendition and the chromaticity coordinates of the emission can be tuned through halide substitution. We have isolated materials that emit the "warm" white light sought for many indoor lighting applications as well as "cold" white light that approximates the visible region of the solar spectrum. Material syntheses are inexpensive and scalable and binding agents are not required for film deposition, eliminating problems of binder photodegradation. These well-defined and tunable structures provide a flexible platform for studying the rare phenomenon of intrinsic broadband emission from bulk materials.

3.
J Am Chem Soc ; 136(38): 13154-7, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25162937

RESUMO

We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

4.
Chem Sci ; 8(6): 4497-4504, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970879

RESUMO

Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(µ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

5.
J Phys Chem Lett ; 7(12): 2258-63, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27246299

RESUMO

The recently discovered phenomenon of broadband white-light emission at room temperature in the (110) two-dimensional organic-inorganic perovskite (N-MEDA)[PbBr4] (N-MEDA = N(1)-methylethane-1,2-diammonium) is promising for applications in solid-state lighting. However, the spectral broadening mechanism and, in particular, the processes and dynamics associated with the emissive species are still unclear. Herein, we apply a suite of ultrafast spectroscopic probes to measure the primary events directly following photoexcitation, which allows us to resolve the evolution of light-induced emissive states associated with white-light emission at femtosecond resolution. Terahertz spectra show fast free carrier trapping and transient absorption spectra show the formation of self-trapped excitons on femtosecond time-scales. Emission-wavelength-dependent dynamics of the self-trapped exciton luminescence are observed, indicative of an energy distribution of photogenerated emissive states in the perovskite. Our results are consistent with photogenerated carriers self-trapped in a deformable lattice due to strong electron-phonon coupling, where permanent lattice defects and correlated self-trapped states lend further inhomogeneity to the excited-state potential energy surface.

6.
Chem Sci ; 6(1): 613-617, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28706629

RESUMO

We report on reversible, light-induced transformations in (CH3NH3)Pb(Br x I1-x )3. Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA