Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2662, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302573

RESUMO

Video monitoring of mice in the home-cage reveals behavior profiles without the disruptions caused by specialized test setups and makes it possible to quantify changes in behavior patterns continually over long time frames. Several commercial home-cage monitoring systems are available with varying costs and capabilities; however there are currently no open-source systems for home-cage monitoring. We present an open-source system for top-down video monitoring of research mice in a slightly modified home-cage. The system is designed for integration with Allentown NexGen ventilated racks and allows unobstructed view of up to three mice, but can also be operated outside the rack. The system has an easy to duplicate and assemble home-cage design along with a video acquisition solution. The system utilizes a depth video camera, and we demonstrate the robustness of depth video for home-cage mice monitoring. For researchers without access to Allentown NexGen ventilated racks, we provide designs and assembly instructions for a standalone non-ventilated rack solution that holds three systems for more compact and efficient housing. We make all the design files, along with detailed assembly and installation instructions, available on the project webpage ( https://github.com/NIH-CIT-OIR-SPIS/MouseVUER ).


Assuntos
Computadores , Abrigo para Animais , Camundongos , Animais
2.
J Neurosci Methods ; 339: 108730, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302596

RESUMO

BACKGROUND: Modern molecular tools make it possible to manipulate neural activity in a reversible and cell-type specific manner. For rhesus monkey research, molecular tools are generally introduced via viral vectors. New instruments designed specifically for use in monkey research are needed to enhance the efficiency and reliability of vector delivery. NEW METHOD: A suite of multi-channel injection devices was developed to permit efficient and uniform vector delivery to cortical regions of the monkey brain. Manganese was co-infused with virus to allow rapid post-surgical confirmation of targeting accuracy using MRI. A needle guide was designed to increase the accuracy of sub-cortical targeting using stereotaxic co-ordinates. RESULTS: The multi-channel injection devices produced dense, uniform coverage of dorsal surface cortex, ventral surface cortex, and intra-sulcal cortex, respectively. Co-infusion of manganese with the viral vector allowed for immediate verification of injection accuracy. The needle guide improved accuracy of targeting sub-cortical structures by preventing needle deflection. COMPARISON WITH EXISTING METHOD(S): The current methods, hand-held injections or single slow mechanical injection, for surface cortex transduction do not, in our hands, produce the density and uniformity of coverage provided by the injector arrays and associated infusion protocol. CONCLUSIONS: The efficiency and reliability of vector delivery has been considerably improved by the development of new methods and instruments. This development should facilitate the translation of chemo- and optogenetic studies performed in smaller animals to larger animals such as rhesus monkeys.


Assuntos
Encéfalo , Vetores Genéticos , Animais , Macaca mulatta , Optogenética , Reprodutibilidade dos Testes
3.
J Neurosci Methods ; 155(2): 217-23, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16522331

RESUMO

In order to expand the repertoire of somatosensory functions that can be effectively studied through functional MRI, we have developed a tactile stimulator which can deliver rich and varied combinations of stimulation that simulate natural tactile exploration. The system is computer controlled and compatible with an MRI environment. Complex aspects of somesthesis can thus be studied independent of confounds introduced by motor activity or problems with precision, accuracy or reproducibility of stimulus delivery.


Assuntos
Metodologias Computacionais , Imageamento por Ressonância Magnética , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Mapeamento Encefálico , Humanos , Oxigênio/sangue , Estimulação Física/instrumentação , Estimulação Física/métodos , Tempo de Reação/fisiologia , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA