Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mol Genet ; 28(R1): R3-R14, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261383

RESUMO

Recombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput 'top-down' or (semi-)rational 'bottom-up' approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Animais , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Engenharia Genética , Terapia Genética , Humanos , Regiões Promotoras Genéticas , Transdução Genética , Transgenes
2.
Nucleic Acids Res ; 47(13): e75, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30982889

RESUMO

The rapid development of CRISPR-Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3'UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR-Cas orthologue, for which a potent anti-CRISPR protein is known.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Regulação da Expressão Gênica , Transgenes , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/biossíntese , Dependovirus/genética , Ativação Enzimática , Indução Enzimática , Genes Reporter , Células HEK293 , Células HeLa , Hepatócitos/metabolismo , Humanos , Luciferases de Renilla/análise , Luciferases de Renilla/genética , MicroRNAs , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/antagonistas & inibidores
3.
Mol Ther ; 22(11): 1923-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200009

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.


Assuntos
Dependovirus/genética , Distrofina/genética , Membro Anterior/fisiopatologia , Distrofia Muscular de Duchenne/terapia , RNA Nuclear Pequeno/genética , Animais , Estudos de Coortes , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Éxons , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Infusões Intravenosas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , RNA Nuclear Pequeno/metabolismo
4.
Mol Ther Nucleic Acids ; 10: 277-291, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499940

RESUMO

Non-coding uridine-rich small nuclear RNAs (UsnRNAs) have emerged in recent years as effective tools for exon skipping for the treatment of Duchenne muscular dystrophy (DMD), a degenerative muscular genetic disorder. We recently showed the high capacity of a recombinant adeno-associated virus (rAAV)-U7snRNA vector to restore the reading frame of the DMD mRNA in the muscles of DMD dogs. We are now moving toward a phase I/II clinical trial with an rAAV-U7snRNA-E53, carrying an antisense sequence designed to hybridize exon 53 of the human DMD messenger. As observed for genome-editing tools, antisense sequences present a risk of off-target effects, reflecting partial hybridization onto unintended transcripts. To characterize the clinical antisense sequence, we studied its expression and explored the occurrence of its off-target effects in human in vitro models of skeletal muscle and liver. We presented a comprehensive methodology combining RNA sequencing and in silico filtering to analyze off-targets. We showed that U7snRNA-E53 induced the effective exon skipping of the DMD transcript without inducing the notable deregulation of transcripts in human cells, neither at gene expression nor at the mRNA splicing level. Altogether, these results suggest that the use of the rAAV-U7snRNA-E53 vector for exon skipping could be safe in eligible DMD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA