Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Diabetologia ; 62(7): 1257-1267, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069401

RESUMO

AIMS/HYPOTHESIS: Finding new treatment alternatives for individuals with diabetes with severe insulin resistance is highly desired. To identify novel mechanisms that improve glucose uptake in skeletal muscle, independently from insulin levels and signalling, we have explored the therapeutic potential of a short peptide sequence, RG54, derived from apolipoprotein A-I (ApoA-I). METHODS: INS-1E rat clonal beta cells, C2C12 rat muscle myotubes and J774 mouse macrophages were used to study the impact of RG54 peptide on glucose-stimulated insulin secretion, glucose uptake and cholesterol efflux, respectively. GTTs were carried out on diet-induced insulin-resistant and Leprdb diabetic mouse models treated with RG54 peptide, and the impact of RG54 peptide on atherosclerosis was evaluated in Apoe-/- mice. Control mice received ApoA-I protein, liraglutide or NaCl. RESULTS: The synthetic RG54 peptide induced glucose uptake in cultured muscle myotubes by a similar amount as insulin, and also primed pancreatic beta cells for improved glucose-stimulated insulin secretion. The findings were verified in diet-induced insulin-resistant and Leprdb diabetic mice, jointly confirming the physiological effect. The RG54 peptide also efficiently catalysed cholesterol efflux from macrophages and prevented the formation of atherosclerotic plaques in Apoe-/- mice. CONCLUSIONS/INTERPRETATION: The RG54 peptide exhibits good prospects for providing glucose control and reducing the risk of cardiovascular disease in individuals with severe insulin resistance.


Assuntos
Apolipoproteína A-I/química , Aterosclerose/prevenção & controle , Glucose/metabolismo , Peptídeos/química , Peptídeos/uso terapêutico , Animais , Aterosclerose/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2822-2834, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802959

RESUMO

Prolonged hyperglycemia in poorly controlled diabetes leads to an increase in reactive glucose metabolites that covalently modify proteins by non-enzymatic glycation reactions. Apolipoprotein A-I (apoA-I) of high-density lipoprotein (HDL) is one of the proteins that becomes glycated in hyperglycemia. The impact of glycation on apoA-I protein structure and function in lipid and glucose metabolism were investigated. ApoA-I was chemically glycated by two different glucose metabolites (methylglyoxal and glycolaldehyde). Synchrotron radiation and conventional circular dichroism spectroscopy were used to study apoA-I structure and stability. The ability to bind lipids was measured by lipid-clearance assay and native gel analysis, and cholesterol efflux was measured by using lipid-laden J774 macrophages. Diet induced obese mice with established insulin resistance, L6 rat and C2C12 mouse myocytes, as well as INS-1E rat insulinoma cells, were used to determine in vivo and in vitro glucose uptake and insulin secretion. Site-specific, covalent modifications of apoA-I (lysines or arginines) led to altered protein structure, reduced lipid binding capability and a reduced ability to catalyze cholesterol efflux from macrophages, partly in a modification-specific manner. The stimulatory effects of apoA-I on the in vivo glucose clearance were negatively affected when apoA-I was modified with methylglyoxal, but not with glycolaldehyde. The in vitro data showed that both glucose uptake in muscle cells and insulin secretion from beta cells were affected. Taken together, glycation modifications impair the apoA-I protein functionality in lipid and glucose metabolism, which is expected to have implications for diabetes patients with poorly controlled blood glucose.


Assuntos
Apolipoproteína A-I/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Acetaldeído/análogos & derivados , Acetaldeído/farmacologia , Animais , Apolipoproteína A-I/química , Glicemia/efeitos dos fármacos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Linhagem Celular , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Glicosilação/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3038-3048, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28887204

RESUMO

Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , HDL-Colesterol/metabolismo , Colesterol/metabolismo , Dislipidemias/metabolismo , Amiloidose/metabolismo , Animais , Apolipoproteína A-I/genética , Sítios de Ligação , Colesterol/sangue , Humanos , Hipoalfalipoproteinemias/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Relação Estrutura-Atividade
4.
Biopolymers ; 105(10): 683-92, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27122373

RESUMO

The effect molecular crowding, defined as the volume exclusion exerted by one soluble inert molecule upon another soluble molecule, has on the structure and self-interaction of lipid-free apoA-I were explored. The influence of molecular crowding on lipid-free apoA-I oligomerization and internal dynamics has been analyzed using electron paramagnetic resonance (EPR) spectroscopy measurements of nitroxide spin label at selected positions throughout the protein sequence and at varying concentrations of the crowding agent Ficoll-70. The targeted positions include sites previously shown to be sensitive for detecting intermolecular interaction via spin-spin coupling. Circular dichroism was used to study secondary structural changes in lipid-free apoA-I imposed by increasing concentrations of the crowding agent. Crosslinking and SDS-PAGE gel analysis was employed to further characterize the role molecular crowding plays in inducing apoA-I oligomerization. It was concluded that the dynamic apoA-I structure and oligomeric state was altered in the presence of the crowding agent. It was also found that the C-terminal was slightly more sensitive to molecular crowding. Finally, the data described the region around residue 217 in the C-terminal domain of apoA-I as the most sensitive reporter of the crowding-induced self-association of apoA-I. The implications of this behavior to in vivo functionality are discussed. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 683-692, 2016.


Assuntos
Apolipoproteína A-I/química , Ficoll/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Domínios Proteicos
5.
J Lipid Res ; 56(12): 2248-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26504176

RESUMO

ApoA-I, the main protein component of HDL, is suggested to be involved in metabolic homeostasis. We examined the effects of Milano, a naturally occurring ApoA-I variant, about which little mechanistic information is available. Remarkably, high-fat-fed mice treated with Milano displayed a rapid weight loss greater than ApoA-I WT treated mice, and a significantly reduced adipose tissue mass, without an inflammatory response. Further, lipolysis in adipose cells isolated from mice treated with either WT or Milano was increased. In primary rat adipose cells, Milano stimulated cholesterol efflux and increased glycerol release, independently of ß-adrenergic stimulation and phosphorylation of hormone sensitive lipase (Ser563) and perilipin (Ser522). Stimulation with Milano had a significantly greater effect on glycerol release compared with WT but similar effect on cholesterol efflux. Pharmacological inhibition or siRNA silencing of ABCA1 did not diminish Milano-stimulated lipolysis, although binding to the cell surface was decreased, as analyzed by fluorescence microscopy. Interestingly, methyl-ß-cyclodextrin, a well-described cholesterol acceptor, dose-dependently stimulated lipolysis. Together, these results suggest that decreased fat mass and increased lipolysis following Milano treatment in vivo is partly explained by a novel mechanism at the adipose cell level comprising stimulation of lipolysis independently of the canonical cAMP/protein kinase A signaling pathway.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Apolipoproteína A-I/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Lipólise/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Colesterol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Nanomedicine ; 10(3): 535-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24269989

RESUMO

By recruiting functional domains supporting DNA condensation, cell binding, internalization, endosomal escape and nuclear transport, modular single-chain polypeptides can be tailored to associate with cargo DNA for cell-targeted gene therapy. Recently, an emerging architectonic principle at the nanoscale has permitted tagging protein monomers for self-organization as protein-only nanoparticles. We have studied here the accommodation of plasmid DNA into protein nanoparticles assembled with the synergistic assistance of end terminal poly-arginines (R9) and poly-histidines (H6). Data indicate a virus-like organization of the complexes, in which a DNA core is surrounded by a solvent-exposed protein layer. This finding validates end-terminal cationic peptides as pleiotropic tags in protein building blocks for the mimicry of viral architecture in artificial viruses, representing a promising alternative to the conventional use of viruses and virus-like particles for nanomedicine and gene therapy. FROM THE CLINICAL EDITOR: Finding efficient gene delivery methods still represents a challenge and is one of the bottlenecks to the more widespread application of gene therapy. The findings presented in this paper validate the application of end-terminal cationic peptides as pleiotropic tags in protein building blocks for "viral architecture mimicking" in artificial viruses, representing a promising alternative to the use of viruses and virus-like particles for gene delivery.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Nanopartículas/química , Proteínas/química , Sequência de Aminoácidos , DNA/genética , Terapia Genética , Células HeLa , Histidina/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química
7.
Nanomedicine ; 8(8): 1263-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22841914

RESUMO

Integrin-binding, Arg-Gly-Asp (RGD)-containing peptides are the most widely used agents to deliver drugs, nanoparticles, and imaging agents. Although in nature, several protein-mediated signal transduction events depend on RGD motifs, the potential of RGD-empowered materials in triggering undesired cell-signaling cascades has been neglected. Using an RGD-functionalized protein nanoparticle, we show here that the RGD motif acts as a powerful trophic factor, supporting extracellular signal-regulated kinase 1/2 (ERK1/2)-linked cell proliferation and partial differentiation of PC12 cells, a neuronlike model. FROM THE CLINICAL EDITOR: This work focuses on RGD peptides, which are among the most commonly used tags for targeted drug delivery. They also promote protoneurite formation and expression of neuronal markers (MAP2) in model PC12 cells, which is an unexpected but relevant event in the functionalization of drugs and their nanocarriers.


Assuntos
Integrinas , Nanopartículas/química , Oligopeptídeos/química , Peptídeos/química , Sítios de Ligação , Diferenciação Celular , Proliferação de Células , Sistemas de Liberação de Medicamentos , Humanos , Integrinas/química , Integrinas/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Transdução de Sinais
8.
Mol Metab ; 35: 100949, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244181

RESUMO

OBJECTIVE: Acute administration of the main protein component of high-density lipoprotein, apolipoprotein A-I (ApoA-1), improves glucose uptake in skeletal muscle. The molecular mechanisms mediating this are not known, but in muscle cell cultures, ApoA-1 failed to increase glucose uptake when infected with a dominant-negative AMP-activated protein kinase (AMPK) virus. We therefore investigated whether AMPK is necessary for ApoA-1-stimulated glucose uptake in intact heart and skeletal muscle in vivo. METHODS: The effect of injection with recombinant human ApoA-1 (rApoA-1) on glucose tolerance, glucose-stimulated insulin secretion, and glucose uptake into skeletal and heart muscle with and without block of insulin secretion by injection of epinephrine (0.1 mg/kg) and propranolol (5 mg/kg), were investigated in 8 weeks high-fat diet-fed (60E%) wild-type and AMPKα2 kinase-dead mice in the overnight-fasted state. In addition, the effect of rApoA-1 on glucose uptake in isolated skeletal muscle ex vivo was studied. RESULTS: rApoA-1 lowered plasma glucose concentration by 1.7 mmol/l within 3 h (6.1 vs 4.4 mmol/l; p < 0.001). Three hours after rApoA-1 injection, glucose tolerance during a 40-min glucose tolerance test (GTT) was improved compared to control (area under the curve (AUC) reduced by 45%, p < 0.001). This was accompanied by an increased glucose clearance into skeletal (+110%; p < 0.001) and heart muscle (+100%; p < 0.001) and an increase in glucose-stimulated insulin secretion 20 min after glucose injection (+180%; p < 0.001). When insulin secretion was blocked during a GTT, rApoA-1 still enhanced glucose tolerance (AUC lowered by 20% compared to control; p < 0.001) and increased glucose clearance into skeletal (+50%; p < 0.05) and heart muscle (+270%; p < 0.001). These improvements occurred to a similar extent in both wild-type and AMPKα2 kinase-dead mice and thus independently of AMPKα2 activity in skeletal- and heart muscle. Interestingly, rApoA-1 failed to increase glucose uptake in isolated skeletal muscles ex vivo. CONCLUSIONS: In conclusion, ApoA-1 stimulates in vivo glucose disposal into skeletal and heart muscle independently of AMPKα2. The observation that ApoA-1 fails to increase glucose uptake in isolated muscle ex vivo suggests that additional systemic effects are required.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apolipoproteína A-I/administração & dosagem , Glicemia/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Recombinantes/administração & dosagem
9.
Microb Cell Fact ; 8: 17, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19317892

RESUMO

Most of the hosts used to produce the 151 recombinant pharmaceuticals so far approved for human use by the Food and Drug Administration (FDA) and/or by the European Medicines Agency (EMEA) are microbial cells, either bacteria or yeast. This fact indicates that despite the diverse bottlenecks and obstacles that microbial systems pose to the efficient production of functional mammalian proteins, namely lack or unconventional post-translational modifications, proteolytic instability, poor solubility and activation of cell stress responses, among others, they represent convenient and powerful tools for recombinant protein production. The entering into the market of a progressively increasing number of protein drugs produced in non-microbial systems has not impaired the development of products obtained in microbial cells, proving the robustness of the microbial set of cellular systems (so far Escherichia coli and Saccharomyces cerevisae) developed for protein drug production. We summarize here the nature, properties and applications of all those pharmaceuticals and the relevant features of the current and potential producing hosts, in a comparative way.

10.
Sci Rep ; 7(1): 13540, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051568

RESUMO

Apolipoprotein A-I (apoA-I) in high-density lipoprotein (HDL) provides cardiovascular protection. Synchrotron radiation circular dichroism (SRCD) spectroscopy was used to analyze the dynamic solution structure of the apoA-I protein in the apo- and HDL-states and the protein structure conversion in HDL formation. Wild-type apoA-I protein was compared to human variants that either are protective (R173C, Milano) or lead to increased risk for ischaemic heart disease (A164S). Comparable secondary structure distributions in the HDL particles, including significant levels of beta strand/turn, were observed. ApoA-I Milano in HDL displayed larger size heterogeneity, increased protein flexibility, and an altered lipid-binding profile, whereas the apoA-I A164S in HDL showed decrease thermal stability, potentially linking the intrinsic HDL propensities of the variants to disease risk.


Assuntos
Apolipoproteína A-I/química , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Dicroísmo Circular , Humanos , Lipoproteínas HDL/química , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica em Folha beta , Estabilidade Proteica , Síncrotrons , Temperatura de Transição
11.
Diabetes ; 65(7): 1838-48, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207515

RESUMO

Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on ß-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glucose uptake. However, the relative contribution of apoA-I as an enhancer of GSIS in vivo and as a direct stimulator of insulin-independent glucose uptake is not known. Here, DIO mice with instant and transient blockade of insulin secretion were used in glucose tolerance tests and in positron emission tomography analyses. Data demonstrate that apoA-I to an equal extent enhances GSIS and acts as peripheral tissue activator of insulin-independent glucose uptake and verify skeletal muscle as an apoA-I target tissue. Intriguingly, our analyses also identify the heart as an important target tissue for the apoA-I-stimulated glucose uptake, with potential implications in diabetic cardiomyopathy. Explorations of apoA-I as a novel antidiabetic drug should extend to treatments of diabetic cardiomyopathy and other cardiovascular diseases in patients with diabetes.


Assuntos
Apolipoproteína A-I/farmacologia , Glucose/farmacologia , Coração/efeitos dos fármacos , Insulina/metabolismo , Músculo Esquelético/efeitos dos fármacos , Miocárdio/metabolismo , Obesidade/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Glucose/metabolismo , Secreção de Insulina , Camundongos , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Int J Nanomedicine ; 7: 4533-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22923991

RESUMO

BACKGROUND: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. RESULTS: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4⁺ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. CONCLUSION: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Espaço Intracelular/metabolismo , Nanopartículas/química , Peptídeos/farmacocinética , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Endocitose/fisiologia , Feminino , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/farmacocinética , Humanos , Camundongos , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética
13.
Biomaterials ; 33(33): 8714-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22954515

RESUMO

Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides.


Assuntos
Nanopartículas/química , Peptídeos/química , Proteínas/química , Células HeLa , Histidina/química , Humanos , Microscopia Eletrônica de Transmissão , Engenharia de Proteínas , Eletricidade Estática
14.
Prog Mol Biol Transl Sci ; 104: 247-98, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22093221

RESUMO

The development of genetic engineering techniques has speeded up the growth of the biotechnological industry, resulting in a significant increase in the number of recombinant protein products on the market. The deep knowledge of protein function, structure, biological interactions, and the possibility to design new polypeptides with desired biological activities have been the main factors involved in the increase of intensive research and preclinical and clinical approaches. Consequently, new biological entities with added value for innovative medicines such as increased stability, improved targeting, and reduced toxicity, among others have been obtained. Proteins are complex nanoparticles with sizes ranging from a few nanometers to a few hundred nanometers when complex supramolecular interactions occur, as for example, in viral capsids. However, even though protein production is a delicate process that imposes the use of sophisticated analytical methods and negative secondary effects have been detected in some cases as immune and inflammatory reactions, the great potential of biodegradable and tunable protein nanoparticles indicates that protein-based biotechnological products are expected to increase in the years to come.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Terapia Genética , Nanopartículas/uso terapêutico , Engenharia de Proteínas , Proteínas/uso terapêutico , Sequência de Aminoácidos , Animais , Tecnologia Biomédica , Humanos , Dados de Sequência Molecular , Proteínas/química , Proteínas/genética
15.
Nanomedicine (Lond) ; 6(6): 1047-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21651444

RESUMO

UNLABELLED: AIM & METHODS: We have produced two chimerical peptides of 10.2 kDa, each contain four biologically active domains, which act as building blocks of protein-based nonviral vehicles for gene therapy. In solution, these peptides tend to aggregate as amorphous clusters of more than 1000 nm, while the presence of DNA promotes their architectonic reorganization as mechanically stable nanometric spherical entities of approximately 80 nm that penetrate mammalian cells through arginine-glycine-aspartic acid cell-binding domains and promote significant transgene expression levels. RESULTS & CONCLUSION: The structural analysis of the protein in these hybrid nanoparticles indicates a molecular conformation with predominance of α-helix and the absence of cross-molecular, ß-sheet-supported protein interactions. The nanoscale organizing forces generated by DNA-protein interactions can then be observed as a potentially tunable, critical factor in the design of protein-only based artificial viruses for gene therapy.


Assuntos
DNA/química , DNA/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Células Cultivadas , Dicroísmo Circular , DNA/genética , DNA/ultraestrutura , Terapia Genética/métodos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Peptídeos/genética , Ligação Proteica , Proteínas/genética , Proteínas/ultraestrutura , Ratos , Ratos Sprague-Dawley
16.
Biomaterials ; 31(35): 9333-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20869766

RESUMO

Understanding the intracellular trafficking of nanoparticles internalized by mammalian cells is a critical issue in nanomedicine, intimately linked to therapeutic applications but also to toxicity concerns. While the uptake mechanisms of carbon nanotubes and polymeric particles have been investigated fairly extensively, there are few studies on the migration and fate of protein-only nanoparticles other than natural viruses. Interestingly, protein nanoparticles are emerging as tools in personalized medicines because of their biocompatibility and functional tuneability, and are particularly promising for gene therapy and also conventional drug delivery. Here, we have investigated the uptake and kinetics of intracellular migration of protein nanoparticles built up by a chimerical multifunctional protein, and functionalized by a pleiotropic, membrane-active (R9) terminal peptide. Interestingly, protein nanoparticles are first localized in endosomes, but an early endosomal escape allows them to reach and accumulate in the nucleus (but not in the cytoplasm), with a migration speed of 0.0044 ± 0.0003 µm/s, ten-fold higher than that expected for passive diffusion. Interestingly, the plasmatic, instead of the nuclear membrane is the main cellular barrier in the nuclear way of R9-assisted protein-only nanoparticles.


Assuntos
Nanopartículas/química , Proteínas/química , Proteínas/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Engenharia Genética/métodos , Células HeLa , Humanos , Microscopia Confocal , Proteínas/genética
17.
J Biomol Screen ; 15(4): 453-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20233904

RESUMO

Protein aggregation is a major obstacle in recombinant protein production as it reduces the yield of soluble polypeptides. Also, the formation of aggregates occurring in the soluble fraction is more common than formerly expected, and the prevalence of these entities might significantly affect the average quality of the soluble protein species. Usually, the formation of soluble aggregates remains unperceived because analytical methods such as dynamic light scattering are not routinely applied as quality control procedures. The authors have developed a methodologically simple and fast procedure, based on microdialysis and image processing, that reveals the aggregation tendency of a given protein in a specific environment. Because they also show a good correlation between macroscopic aggregation and soluble aggregate formation, the microdialysis approach also permits an estimation of the occurrence of soluble aggregates.


Assuntos
Bioensaio/métodos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Microdiálise/métodos , Ligação Proteica , Estrutura Quaternária de Proteína , Solubilidade , Fatores de Tempo
18.
Nanomedicine (Lond) ; 5(2): 259-68, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20148637

RESUMO

AIMS: Arginine(R)-rich cationic peptides are powerful tools in drug delivery since, alone or when associated with polyplexes, proteins or chemicals, they confer DNA condensation, membrane translocation and blood-brain barrier crossing abilities. The unusual stability and high in vivo performance of their associated drugs suggest a particulate organization or R(n) complexes, which this study aimed to explore. MATERIALS & METHODS: We have analyzed the particulate organization and biological performance in DNA delivery of a model, R9-containing green fluorescent protein by dynamic light scattering, transmission electron microscopy, atomic force microscopy, single cell confocal microscopy and flow cytometry. RESULTS: A deep nanoscale examination of R9-powered constructs reveals a novel and promising feature of R9, that when fused to a scaffold green fluorescent protein, promote its efficient self-assembling as highly stable, regular disk-shaped nanoparticles of 20 x 3 nm. These constructs are efficiently internalized in mammalian cells and rapidly migrate through the cytoplasm towards the nucleus in a fully bioactive form. Besides, such particulate platforms accommodate, condense and deliver plasmid DNA to the nucleus and promote plasmid-driven transgene expression. CONCLUSION: The architectonic properties of arginine-rich peptides at the nanoscale reveal a new category of protein nanoparticles, namely nanodisks, and provide novel strategic concepts and architectonic tools for the tailored construction of new-generation artificial viruses for gene therapy and drug delivery.


Assuntos
Arginina/química , Nanopartículas/química , Peptídeos/química , Barreira Hematoencefálica , Cátions , DNA/química , DNA/genética , Citometria de Fluxo/métodos , Corantes Fluorescentes/farmacologia , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA