Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ann Bot ; 133(2): 305-320, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38041589

RESUMO

BACKGROUND AND AIMS: Given the lack of specific studies on floral development in melon (Cucumis melo L.), we carried out an extensive study involving morphological and transcriptomic analyses to characterize floral development in this species. METHODS: Using an andromonoecious line, we analysed the development of floral buds in male and hermaphrodite flowers with both light microscopy and scanning electron microscopy. Based on flower lengths, we established a correlation between the developmental stages and four main episodes of floral development and conducted an extensive RNA sequencing analysis of these episodes. KEY RESULTS: We identified 12 stages of floral development, from the appearance of the floral meristems to anthesis. The main structural differences between male and hermaphrodite flowers appeared between stages 6 and 7; later stages of development leading to the formation of organs and structures in both types of flowers were also described. We analysed the gene expression patterns of the four episodes in flower development to find the genes that were specific to each given episode. Among others, we identified genes that defined the passage from one episode to the next according to the ABCDE model of floral development. CONCLUSIONS: This work combines a detailed morphological analysis and a comprehensive transcriptomic study to enable characterization of the structural and molecular mechanisms that determine the floral development of an andromonoecious genotype in melon. Taken together, our results provide a first insight into gene regulation networks in melon floral development that are crucial for flowering and pollen formation, highlighting potential targets for genetic manipulation to improve crop yield of melon in the future.


Assuntos
Cucurbitaceae , Cucurbitaceae/genética , Perfilação da Expressão Gênica/métodos , Flores , Reprodução , Genes Reguladores , Regulação da Expressão Gênica de Plantas
2.
Plant Biotechnol J ; 21(10): 2140-2154, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37448155

RESUMO

The hyperosmolality-gated calcium permeable channel 4.1 (OSCA4.1) belongs to an evolutionarily conserved small family of mechano-sensitive channels. OSCA members may represent key players in plant resistance to drought and to pathogen infection but are scarcely studied. After screening for resistance to pepino mosaic virus (PepMV) a collection of 1000 mutagenized tomato families, we identified a mutant showing no symptoms and reduced virus accumulation. Resistance was mapped to chromosome 2 between positions 46 309 531 to 47 044 163, where a missense mutation caused the putative truncation of the OSCA4.1 protein. A CRISPR/Cas9 slosca4.1 mutant was resistant to PepMV, but not to tobacco mosaic virus or potato virus X. Inoculation of mutant and wild type tomato protoplasts showed that resistance was expressed in single cells, suggesting a role for SlOSCA4.1 in early viral function(s); congruently, SlOSCA4.1 re-localized to structures reminiscent of viral replication complexes. We propose that SlOSCA4.1 contributes to the correct regulation of the Ca2+ homeostasis necessary for optimal PepMV infection. PepMV is a pandemic virus that causes significant losses in tomato crops worldwide. In spite of its importance, no tomato-resistant varieties have been deployed yet; the mutant identified here has great potential to breed tomato varieties resistant to PepMV.


Assuntos
Potexvirus , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Potexvirus/genética , Potexvirus/metabolismo , Cálcio/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética
3.
J Virol ; 96(16): e0042122, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924924

RESUMO

Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.


Assuntos
Begomovirus , Produtos Agrícolas , Cucurbitaceae , Interações entre Hospedeiro e Microrganismos , Luteoviridae , Doenças das Plantas , Plantas Daninhas , Animais , Afídeos/virologia , Begomovirus/classificação , Begomovirus/genética , Produtos Agrícolas/virologia , Cucurbitaceae/virologia , Genética Populacional , Interações entre Hospedeiro e Microrganismos/genética , Luteoviridae/genética , Malva/virologia , Filogenia , Doenças das Plantas/virologia , Plantas Daninhas/virologia , RNA Polimerase Dependente de RNA/metabolismo , Solanum nigrum/virologia
4.
New Phytol ; 238(1): 332-348, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631978

RESUMO

Pepino mosaic virus (PepMV) is pandemic in tomato crops, causing important economic losses world-wide. No PepMV-resistant varieties have been developed yet. Identification of host factors interacting with PepMV proteins is a promising source of genetic targets to develop PepMV-resistant varieties. The interaction between the PepMV coat protein (CP) and the tomato glutathione S-transferase (GST) SlGSTU38 was identified in a yeast two-hybrid (Y2H) screening and validated by directed Y2H and co-immunoprecipitation assays. SlGSTU38-knocked-out Micro-Tom plants (gstu38) generated by the CRISPR/Cas9 technology together with live-cell imaging were used to understand the role of SlGSTU38 during infection. The transcriptomes of healthy and PepMV-infected wild-type (WT) and gstu38 plants were profiled by RNA-seq analysis. SlGSTU38 functions as a PepMV-specific susceptibility factor in a cell-autonomous manner and relocalizes to the virus replication complexes during infection. Besides, knocking out SlGSTU38 triggers reactive oxygen species accumulation in leaves and the deregulation of stress-responsive genes. SlGSTU38 may play a dual role: On the one hand, SlGSTU38 may exert a proviral function depending on its specific interaction with the PepMV CP; and on the other hand, SlGSTU38 may delay PepMV-infection sensing by participating in the redox intracellular homeostasis in a nonspecific manner.


Assuntos
Potexvirus , Solanum lycopersicum , Viroses , Sequência de Bases , Viroses/genética , Doenças das Plantas
5.
Arch Virol ; 168(1): 16, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593371

RESUMO

We determined the complete genome sequence of a new virus infecting Ecballium elaterium ('cohombrillo amargo') plants, a weed species common on the borders of cultivated fields in the Mediterranean region. The genome of this virus is composed of two molecules of monocistronic positive-sense RNA, 6,934 and 3,501 nucleotides in length, excluding their poly(A) tails. The highest amino acid sequence similarity (50 % identity) in the Pro-Pol core region encoded by RNA 1 was observed in the corresponding protein of strawberry latent ringspot virus. Based on pairwise comparisons and phylogenetic analysis, this virus, tentatively named "cohombrillo-associated virus" (CoAV), appears to be a member of a new species in the genus Stralarivirus (family Secoviridae), for which the name "Stralarivirus elaterii" is proposed. This new virus has different putative cleavage patterns from members of other species belonging to this genus.


Assuntos
Vírus de Plantas , Secoviridae , Vírus Satélites/genética , RNA Viral/genética , Filogenia , Vírus de Plantas/genética , Genoma Viral , Doenças das Plantas , Fases de Leitura Aberta
6.
Plant Biotechnol J ; 20(10): 2006-2022, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778883

RESUMO

The cap-binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap-dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single-nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non-transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non-mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild-type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild-type. An RNA-Seq analysis identified critical genes in pollen development that were down-regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E-specific mRNA translation initiation is a limiting factor for male gametes formation in melon.


Assuntos
Cucurbitaceae , Fator de Iniciação 4E em Eucariotos , Gametogênese Vegetal , Doenças das Plantas , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Potyvirus , Sistemas CRISPR-Cas , Cucurbitaceae/genética , Cucurbitaceae/virologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Gametogênese Vegetal/genética , Edição de Genes , Doenças das Plantas/genética , Doenças das Plantas/virologia , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento
7.
Virus Genes ; 58(4): 372-375, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35471489

RESUMO

In this work, a novel viral genomic sequence with a gene organization typical of members of the genus Soymovirus was identified using high-throughput sequencing data from common mallow. This species is a vigorous wild weed native to the Mediterranean region, commonly found in borders and edges of cultivated fields, making it a suitable reservoir for plant pests and pathogens. Indeed, plant viruses belonging to different genera have been previously found infecting common malva. This new viral genome consists of a single molecule of circular double-stranded DNA of 8391 base pairs and contains eight open reading frames encoding polymerase, movement, coat, translational transactivator protein typical of caulimoviruses, and four hypothetical proteins. Phylogenetic and pairwise distance analyses showed its close relationship with soybean chlorotic mottle virus. Interestingly, a small intergenic region was detected between ORFs Ib and II. Based on the demarcation criteria of the genus Soymovirus, the new virus, provisionally named malva-associated soymovirus 1, could be a member of a new species Soymovirus masolus. To our knowledge, this is the first report of a soymovirus infecting common mallow.


Assuntos
Caulimoviridae , Malva , Caulimoviridae/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Doenças das Plantas
8.
Phytopathology ; 111(5): 862-869, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33258410

RESUMO

It is well described that viral infections stimulate the emission of plant volatiles able to recruit viral vectors thereby promoting virus spread. In contrast, much less is known on the effects that emitted volatiles may have on the metabolism of healthy neighboring plants, which are potential targets for new infections through vector transmission. Watermelon mosaic virus (WMV) (genus Potyvirus, family Potyviridae) is an aphid-transmitted virus endemic in cucurbit crops worldwide. We have compared gene expression profiles of WMV-infected melon plants with those of healthy or healthy-but-cohabited-with-infected plants. Pathogenesis-related (PR) and small heat shock protein encoding genes were deregulated in cohabited plants, and PR deregulation depended on the distance to the infected plant. The signaling was short distance in the experimental conditions used, and cohabiting had a moderate effect on the plant susceptibility to WMV. Static headspace experiments showed that benzaldehyde and γ-butyrolactone were significantly over-emitted by WMV-infected plants. Altogether, our data suggest that perception of a volatile signal encoded by WMV-infected tissues triggers a response to prepare healthy tissues or/and healthy neighboring plants for the incoming infections.


Assuntos
Afídeos , Cucurbitaceae , Vírus de Plantas , Animais , Doenças das Plantas , Transcriptoma
9.
J Gen Virol ; 101(5): 454-455, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375992

RESUMO

The family Botourmiaviridae includes viruses infecting plants and filamentous fungi containing a positive-sense, ssRNA genome that can be mono- or multi-segmented. Genera in the family include: Ourmiavirus (plant viruses), and Botoulivirus, Magoulivirus and Scleroulivirus (fungal viruses). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Botourmiaviridae, which is available at ictv.global/report/botourmiaviridae.


Assuntos
Vírus/classificação , Micovírus/classificação , Micovírus/genética , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética , Vírus/genética
10.
New Phytol ; 224(1): 421-438, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111491

RESUMO

BIR1 is a receptor-like kinase that functions as a negative regulator of basal immunity and cell death in Arabidopsis. Using Arabidopsis thaliana and Tobacco rattle virus (TRV), we investigate the antiviral role of BIR1, the molecular mechanisms of BIR1 gene expression regulation during viral infections, and the effects of BIR1 overexpression on plant immunity and development. We found that SA acts as a signal molecule for BIR1 activation during infection. Inactivating mutations of BIR1 in the bir1-1 mutant cause strong antiviral resistance independently of constitutive cell death or SA defense priming. BIR1 overexpression leads to severe developmental defects, cell death and premature death, which correlate with the constitutive activation of plant immune responses. Our findings suggest that BIR1 acts as a negative regulator of antiviral defense in plants, and indicate that RNA silencing contributes, alone or in conjunction with other regulatory mechanisms, to define a threshold expression for proper BIR1 function beyond which an autoimmune response may occur. This work provides novel mechanistic insights into the regulation of BIR1 homeostasis that may be common for other plant immune components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/virologia , Imunidade Vegetal/genética , Vírus de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Metilação de DNA/genética , Inativação Gênica , Mutação/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Ácido Salicílico/farmacologia , Regulação para Cima/genética
11.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381573

RESUMO

We have investigated short and small RNAs (sRNAs) that were bound to a biologically active hexahistidine-tagged Potato virus Y (PVY) HCPro suppressor of silencing, expressed from a heterologous virus vector in Nicotiana benthamiana plants, and purified under nondenaturing conditions. We found that RNAs in purified preparations were differentially enriched in 21-nucleotide (nt) and, to a much lesser extent, 22-nt sRNAs of viral sequences (viral sRNAs [vsRNAs]) compared to those found in a control plant protein background bound to nickel resin in the absence of HCPro or in a purified HCPro alanine substitution mutant (HCPro mutB) control that lacked suppressor-of-silencing activity. In both controls, sRNAs were composed almost entirely of molecules of plant sequence, indicating that the resin-bound protein background had no affinity for vsRNAs and also that HCPro mutB failed to bind to vsRNAs. Therefore, PVY HCPro suppressor activity correlated with its ability to bind to 21- and 22-nt vsRNAs. HCPro constituted at least 54% of the total protein content in purified preparations, and we were able to calculate its contribution to the 21- and the 22-nt pools of sRNAs present in the purified samples and its binding strength relative to the background. We also found that in the 21-nt vsRNAs of the HCPro preparation, 5'-terminal adenines were overrepresented relative to the controls, but this was not observed in vsRNAs of other sizes or of plant sequences.IMPORTANCE It was previously shown that HCPro can bind to long RNAs and small RNAs (sRNAs) in vitro and, in the case of Turnip mosaic virus HCPro, also in vivo in arabidopsis AGO2-deficient plants. Our data show that PVY HCPro binds in vivo to sRNAs during infection in wild-type Nicotiana benthamiana plants when expressed from a heterologous virus vector. Using a suppression-of-silencing-deficient HCPro mutant that can accumulate in this host when expressed from a virus vector, we also show that sRNA binding correlates with silencing suppression activity. We demonstrate that HCPro binds at least to sRNAs with viral sequences of 21 nucleotides (nt) and, to a much lesser extent, of 22 nt, which were are also differentially enriched in 5'-end adenines relative to the purified controls. Together, our results support the physical binding of HCPro to vsRNAs of 21 and 22 nt as a means to interfere with antiviral silencing.


Assuntos
Nicotiana/virologia , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Inativação Gênica , Vetores Genéticos , Nucleotídeos , Doenças das Plantas/virologia , Potyvirus/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
12.
Int J Mol Sci ; 19(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177671

RESUMO

Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) is a major species that causes a tomato disease for which resistant tomato hybrids (mainly carriers of the Ty-1/Ty-3 gene) are being used widely. We have characterized begomoviruses severely affecting resistant tomato crops in Southeast Spain. Circular DNA was prepared from samples by rolling circle amplification, and sequenced by massive sequencing (2015) or cloning and Sanger sequencing (2016). Thus, 23 complete sequences were determined, all belonging to the TYLCV Israel strain (TYLCV-IL). Massive sequencing also revealed the absence of other geminiviral and beta-satellite sequences. A phylogenetic analysis showed that the Spanish isolates belonged to two groups, one related to early TYLCV-IL isolates in the area (Group 1), and another (Group 2) closely related to El Jadida (Morocco) isolates, suggesting a recent introduction. The most parsimonious evolutionary scenario suggested that the TYLCV isolates of Group 2 are back recombinant isolates derived from TYLCV-IS76, a recombinant virus currently predominating in Moroccan epidemics. Thus, an infectious Group 2 clone (TYLCV-Mu15) was constructed and used in in planta competition assays against TYLCV-IS76. TYLCV-Mu15 predominated in single infections, whereas TYLCV-IS76 did so in mixed infections, providing credibility to a scenario of co-occurrence of both types of isolates.


Assuntos
Begomovirus/patogenicidade , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia
13.
J Virol ; 90(1): 553-61, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491166

RESUMO

UNLABELLED: The multiplicity of infection (MOI), i.e., the number of viral genomes that infect a cell, is an important parameter in virus evolution, which for each virus and environment may have an optimum value that maximizes virus fitness. Thus, the MOI might be controlled by virus functions, an underexplored hypothesis in eukaryote-infecting viruses. To analyze if the MOI is controlled by virus functions, we estimated the MOI in plants coinfected by two genetic variants of Tomato bushy stunt virus (TBSV); by TBSV and a TBSV-derived defective interfering RNA (DI-RNA); or by TBSV and a second tombusvirus, Cymbidium ringspot virus (CymRSV). The MOI was significantly larger in TBSV-CymRSV coinfections (~4.0) than in TBSV-TBSV or TBSV-DI-RNA coinfections (~1.7 to 2.2). Coinfections by CymRSV or TBSV with chimeras in which an open reading frame (ORF) of one virus species was replaced by that of the other identified a role of viral proteins in determining the MOI, which ranged from 1.6 to 3.9 depending on the coinfecting genotypes. However, no virus-encoded protein or genomic region was the sole MOI determinant. Coinfections by CymRSV and TBSV mutants in which the expression of the gene-silencing suppressor protein p19 was abolished also showed a possible role of gene silencing in MOI determination. Taken together, these results demonstrate that the MOI is a quantitative trait showing continuous variation and that as such it has a complex determination involving different virus-encoded functions. IMPORTANCE: The number of viral genomes infecting a cell, or the multiplicity of infection (MOI), is an important parameter in virus evolution affecting recombination rates, selection intensity on viral genes, evolution of multipartite genomes, or hyperparasitism by satellites or defective interfering particles. For each virus and environment, the MOI may have an optimum value that maximizes virus fitness, but little is known about MOI control in eukaryote-infecting viruses. We show here that in plants coinfected by two genotypes of Tomato bushy stunt virus (TBSV), the MOI was lower than in plants coinfected by TBSV and Cymbidium ringspot virus (CymRSV). Coinfections by CymRSV or TBSV with TBSV-CymRSV chimeras showed a role of viral proteins in MOI determination. Coinfections by CymRSV and TBSV mutants not expressing the gene-silencing suppressor protein also showed a role of gene silencing in MOI determination. The results demonstrate that the MOI is a quantitative trait with a complex determination involving different viral functions.


Assuntos
Plantas/imunologia , Plantas/virologia , Interferência de RNA , Tombusvirus/crescimento & desenvolvimento , Tombusvirus/imunologia , Interações Hospedeiro-Patógeno
14.
Plant Physiol ; 166(4): 1821-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25358898

RESUMO

During compatible virus infections, plants respond by reprogramming gene expression and metabolite content. While gene expression studies are profuse, our knowledge of the metabolic changes that occur in the presence of the virus is limited. Here, we combine gene expression and metabolite profiling in Arabidopsis (Arabidopsis thaliana) infected with Tobacco rattle virus (TRV) in order to investigate the influence of primary metabolism on virus infection. Our results revealed that primary metabolism is reconfigured in many ways during TRV infection, as reflected by significant changes in the levels of sugars and amino acids. Multivariate data analysis revealed that these alterations were particularly conspicuous at the time points of maximal accumulation of TRV, although infection time was the dominant source of variance during the process. Furthermore, TRV caused changes in lipid and fatty acid composition in infected leaves. We found that several Arabidopsis mutants deficient in branched-chain amino acid catabolism or fatty acid metabolism possessed altered susceptibility to TRV. Finally, we showed that increments in the putrescine content in TRV-infected plants correlated with enhanced tolerance to freezing stress in TRV-infected plants and that impairment of putrescine biosynthesis promoted virus multiplication. Our results thus provide an interesting overview for a better understanding of the relationship between primary metabolism and virus infection.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Suscetibilidade a Doenças , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Lipídeos , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Putrescina/metabolismo , Vírus de RNA/fisiologia , Replicação Viral
16.
New Phytol ; 199(1): 212-227, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627500

RESUMO

Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.


Assuntos
Processamento Alternativo , MicroRNAs/metabolismo , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Reprodutibilidade dos Testes , Especificidade da Espécie , Nicotiana/genética
17.
New Phytol ; 195(1): 47-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22494113

RESUMO

• We have reported previously that the gibberellin (GA) content in strawberry receptacle is high, peaking at specific stages, pointing to a role of this hormone in fruit development. In Arabidopsis, miR159 levels are dependent on GA concentration. This prompted us to investigate the role of two members of the miR159 family and their putative strawberry target gene, GAMYB, in relation to changes in GA content during the course of fruit development. • The highest expression level of the two Fa-MIR159 genes was in the fruit's receptacle tissue, with dramatic changes observed throughout development. The lowest levels of total mature miR159 (a and b) were observed during the white stage of receptacle development, which was concurrent with the highest expression of Fa-GAMYB. A functional interaction between miR159 and Fa-GAMYB has been demonstrated in receptacle tissue. • The application of bioactive GA (i.e. GA(3) ) to strawberry plants caused the down-regulated expression of Fa-MIR159a, but the expression of Fa-MIR159b was not affected significantly. Clear discrepancies between Fa-MIR159b and mature Fa-miR159b levels were indicative of post-transcriptional regulation of Fa-MIR159b gene expression. • We propose that Fa-miR159a and Fa-miR159b interact with Fa-GAMYB during the course of strawberry receptacle development, and that they act in a cooperative fashion to respond, in part, to changes in GA endogenous levels.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , MicroRNAs , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Fragaria/metabolismo , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Mol Plant Pathol ; 23(11): 1592-1607, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35852033

RESUMO

Pepino mosaic virus (PepMV) is a single-stranded (ss), positive-sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of two strains in which the EU isolate represses the accumulation of the CH2 isolate during mixed infections. Reports describing transcriptomic responses to mixed infections are scant. We carried out transcriptomic analyses of tomato plants singly and mixed-infected with two PepMV isolates of both strains. Comparison of the transcriptomes of singly infected plants showed that deeper transcriptomic alterations occurred at early infection times, and also that each of the viral strains modulated the host transcriptome differentially. Mixed infections caused transcriptomic alterations similar to those for the sum of single infections at early infection times, but clearly differing at later times postinfection. We next tested the hypothesis that PepMV-EU, in either single or mixed infections, deregulates host gene expression differentially so that virus accumulation of both strains gets repressed. That seemed to be the case for the genes AGO1a, DCL2d, AGO2a, and DCL2b, which are involved in the antiviral silencing pathway and were upregulated by PepMV-EU but not by PepMV-CH2 at early times postinfection. The pattern of AGO2a expression was validated by reverse transcription-quantitative PCR in tomato and Nicotiana benthamiana plants. Using an N. benthamiana ago2 mutant line, we showed that AGO2 indeed plays an important role in the antiviral defence against PepMV, but it is not the primary determinant of the outcome of the antagonistic interaction between the two PepMV strains.


Assuntos
Coinfecção , Potexvirus , Solanum lycopersicum , Antivirais , Perfilação da Expressão Gênica , Solanum lycopersicum/genética , Doenças das Plantas/genética , Potexvirus/fisiologia , RNA
19.
BMC Genomics ; 12: 393, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21812964

RESUMO

BACKGROUND: Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. RESULTS: We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. CONCLUSION: We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions.


Assuntos
Cucumis melo/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Sequência de Bases , Carmovirus/fisiologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/imunologia , Cotilédone/virologia , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/imunologia , Cucumis melo/virologia , Resistência à Doença/genética , Biblioteca Gênica , MicroRNAs/genética , Fotossíntese/genética , Polinização/genética , Potyvirus/fisiologia , Especificidade da Espécie , Transcriptoma
20.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066188

RESUMO

We used high-throughput sequencing to identify viruses on tomato samples showing virus-like symptoms. Samples were collected from crops in the Iberian Peninsula. Either total RNA or double-stranded RNA (dsRNA) were used as starting material to build the cDNA libraries. In total, seven virus species were identified, with pepino mosaic virus being the most abundant one. The dsRNA input provided better coverage and read depth but missed one virus species compared with the total RNA input. By performing in silico analyses, we determined a minimum sequencing depth per sample of 0.2 and 1.5 million reads for dsRNA and rRNA-depleted total RNA inputs, respectively, to detect even the less abundant viruses. Primers and TaqMan probes targeting conserved regions in the viral genomes were designed and/or used for virus detection; all viruses were detected by qRT-PCR/RT-PCR in individual samples, with all except one sample showing mixed infections. Three virus species (Olive latent virus 1, Lettuce ring necrosis virus and Tomato fruit blotch virus) are herein reported for the first time in tomato crops in Spain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA