RESUMO
Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.
Assuntos
Receptores Frizzled/química , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/genética , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Via de Sinalização WntRESUMO
The emergence of hypervirulent strains of Acinetobacter baumannii poses a significant threat in intensive care units (ICU). This study aimed to molecularly characterize hypervirulent A. baumannii strains isolated from ICU patients with respiratory infections. Six strains were isolated from ICU patients over one month. Isolates were identified by phenotypic characterization biochemical properties and 16s RNA sequencing. Antibiotic susceptibility testing was conducted followed by resistance genes detection by PCR. MLST, and PFGE were employed to analyse clonal relationships among strains. Plasmid replicon typing and plasmid transmission frequencies were determined. The isolated strains exhibited diverse clinical manifestations, including acute respiratory distress syndrome (ARDS). Antibiotic susceptibility testing revealed multidrug-resistance phenotype. Molecular analysis revealed a complex genetic landscape of antibiotic resistance genes, including ESBLs and carbapenemases, as well as virulence genes such as ompA, csuE, and exoS. The multiple sequence types indicating genetic diversity among the strains as ST1512, ST622, and ST149 (each type two isolates). Plasmid characterization revealed the presence of diverse replicon types associated with multidrug resistance. This study provides comprehensive insights into the phenotypic, molecular, and epidemiological characteristics of hypervirulent A. baumannii outbark in ICU.
RESUMO
Class Frizzled G protein-coupled receptors (GPCRs), which includes the Smoothened receptor (SMO) and 10 Frizzled receptors (FZDs), are responsible for mediating fundamental signaling in embryonic development and tissue homeostasis. Dysregulation of these receptors can lead to cancer. Structural understanding of these molecules has provided insight to their function and signaling, and guided drug discovery. To date, the structures of the multi- and individual domains of SMO, 14 FZD extracellular domains, and the transmembrane domain (TMD) of FZD4, have been reported. Here, we review all reported frizzled family structures and diverse signalosome models, with an emphasis on the different ligand binding sites and lipid binding grooves, aiming to uncover the druggability landscape of the frizzled GPCR family.
Assuntos
Receptores Frizzled/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Receptores Frizzled/química , Humanos , Receptores Acoplados a Proteínas G/química , Receptor Smoothened/química , Receptor Smoothened/metabolismoRESUMO
Chemotherapy remains a powerful tool to eliminate malignant cells. However, the efficacy of chemotherapy is compromised by the frequent emergence of intrinsic and acquired multidrug resistance (MDR). These chemoresistance modalities are based on a multiplicity of molecular mechanisms of drug resistance, including : 1) Impaired drug uptake into cancer cells; 2) Increased expression of ATP-binding cassette efflux transporters; 3) Loss of function of pro-apoptotic factors; 4) Enhanced DNA repair capacity; 5) Qualitative or quantitative alterations of specific cellular targets; 6) Alterations that allow cancer cells to tolerate adverse or stressful conditions; 7) Increased biotransformation or metabolism of anticancer drugs to less active or completely inactive metabolites; and 8) Intracellular and intercellular drug sequestration in well-defined organelles away from the cellular target. Hence, one of the major aims of cancer research is to develop novel strategies to overcome cancer drug resistance. Over the last decades, nanomedicine, which focuses on targeted delivery of therapeutic drugs into tumor tissues using nano-sized formulations, has emerged as a promising tool for cancer treatment. Therefore, nanomedicine has been introduced as a reliable approach to improve treatment efficacy and minimize detrimental adverse effects as well as overcome cancer drug resistance. With rationally designed strategies including passively targeted delivery, actively targeted delivery, delivery of multidrug combinations, as well as multimodal combination therapy, nanomedicine paves the way towards efficacious cancer treatment and hold great promise in overcoming cancer drug resistance. Herein, we review the recent progress of nanomaterials used in medicine, including liposomal nanoparticles, polymeric nanoparticles, inorganic nanoparticles and hybrid nanoparticles, to surmount cancer multidrug resistance. Finally, the future perspectives of the application of nanomedicine to reverse cancer drug resistance will be addressed.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismoRESUMO
BACKGROUND: The highly intra-tumoral heterogeneity and complex cell origination of prostate cancer greatly limits the utility of traditional bulk RNA sequencing in finding better biomarker for disease diagnosis and stratification. Tissue specimens based single-cell RNA sequencing holds great promise for identification of novel biomarkers. However, this technique has yet been used in the study of prostate cancer heterogeneity. METHODS: Cell types and the corresponding marker genes were identified by single-cell RNA sequencing. Malignant states of different clusters were evaluated by copy number variation analysis and differentially expressed genes of pseudo-bulks sequencing. Diagnosis and stratification of prostate cancer was estimated by receiver operating characteristic curves of marker genes. Expression characteristics of marker genes were verified by immunostaining. RESULTS: Fifteen cell groups including three luminal clusters with different expression profiles were identified in prostate cancer tissues. The luminal cluster with the highest copy number variation level and marker genes enriched in prostate cancer-related metabolic processes was considered the malignant cluster. This cluster contained a distinct subgroup with high expression level of prostate cancer biomarkers and a strong distinguishing ability of normal and cancerous prostates across different pathology grading. In addition, we identified another marker gene, Hepsin (HPN), with a 0.930 area under the curve score distinguishing normal tissue from prostate cancer lesion. This finding was further validated by immunostaining of HPN in prostate cancer tissue array. CONCLUSION: Our findings provide a valuable resource for interpreting tumor heterogeneity in prostate cancer, and a novel candidate marker for prostate cancer management.
Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/classificação , Neoplasias da Próstata/patologia , Análise de Célula Única/métodos , Humanos , Masculino , Prognóstico , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Curva ROC , Taxa de SobrevidaRESUMO
Determining the complete Arabidopsis (Arabidopsis thaliana) protein-protein interaction network is essential for understanding the functional organization of the proteome. Numerous small-scale studies and a couple of large-scale ones have elucidated a fraction of the estimated 300,000 binary protein-protein interactions in Arabidopsis. In this study, we provide evidence that a docking algorithm has the ability to identify real interactions using both experimentally determined and predicted protein structures. We ranked 0.91 million interactions generated by all possible pairwise combinations of 1,346 predicted structure models from an Arabidopsis predicted "structure-ome" and found a significant enrichment of real interactions for the top-ranking predicted interactions, as shown by cosubcellular enrichment analysis and yeast two-hybrid validation. Our success rate for computationally predicted, structure-based interactions was 63% of the success rate for published interactions naively tested using the yeast two-hybrid system and 2.7 times better than for randomly picked pairs of proteins. This study provides another perspective in interactome exploration and biological network reconstruction using protein structural information. We have made these interactions freely accessible through an improved Arabidopsis Interactions Viewer and have created community tools for accessing these and â¼2.8 million other protein-protein and protein-DNA interactions for hypothesis generation by researchers worldwide. The Arabidopsis Interactions Viewer is freely available at http://bar.utoronto.ca/interactions2/.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Mapas de Interação de Proteínas , Software , Algoritmos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteoma , Técnicas do Sistema de Duplo-HíbridoRESUMO
BACKGROUND: The endoscopic endonasal approach (EEA) has become increasingly employed in the treatment of suprasellar meningiomas. These tumors often cause visual symptoms due to compression of the anterior visual pathway. We aimed to examine long-term visual outcomes after EEA for optic nerve decompression and resection of suprasellar meningioma at our center, and to identify preoperative factors predictive of postoperative visual improvement. METHODS: We performed a retrospective cohort study on 27 patients who underwent the EEA for resection of meningiomas extending into the suprasellar cistern and decompression of anterior visual pathway between January 1, 2005, and March 1, 2019. RESULTS: We treated 8 male and 19 female patients, with a mean follow-up of 7.6 years. The mean age of our patients at initial presentation was 60.1 years. Eighteen patients (66.7%) presented with visual acuity deficits, and 12 (44.4%) patients presented with visual field deficits. Postoperatively, 11 patients had improved visual acuity, 6 had stable visual acuity, and 1 patient had slow and progressive decline of visual acuity; 5 patients had improved visual field, 6 had stable visual field, and 1 patient had slow and progressive decline in visual field. Patients less likely to have postoperative improvement of visual acuity were those with longer than 6-month duration of visual symptoms (P = 0.024*) as well as patients with the presence of a relative afferent pupillary defect (RAPD) (P = 0.023*). CONCLUSION: The EEA can achieve good visual outcomes in patients harboring suprasellar meningiomas. Symptom duration of less than 6 months and lack of a RAPD were positive predictors of postoperative visual acuity.
Assuntos
Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Cirurgia Endoscópica por Orifício Natural/métodos , Procedimentos Neurocirúrgicos/métodos , Complicações Pós-Operatórias/epidemiologia , Baixa Visão/epidemiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cirurgia Endoscópica por Orifício Natural/efeitos adversos , Procedimentos Neurocirúrgicos/efeitos adversos , Nariz , Complicações Pós-Operatórias/etiologia , Sela Túrcica/cirurgia , Baixa Visão/etiologiaRESUMO
The gut microbiota and immune system interaction play a crucial role in maintaining overall health. Probiotics, prebiotics, and postbiotics have emerged as promising therapeutic approaches to positively influence this complex axis and enhance health outcomes. Probiotics, as live bacteria, promote the growth of immune cells, shape immune responses, and maintain gut barrier integrity. They modify the gut microbiota by fostering beneficial bacteria while suppressing harmful ones. Additionally, probiotics interact with the immune system, increasing immune cell activity and anti-inflammatory cytokine production. Prebiotics, as indigestible fibers, selectively nourish beneficial microorganisms in the gut, enhancing gut microbial diversity and activity. This, in turn, improves gut health and boosts immune responses while controlling inflammation through its immunomodulatory properties. Postbiotics, produced during probiotic fermentation, such as short-chain fatty acids and antimicrobial peptides, positively impact gut health and modulate immune responses. Ensuring quality control and standardization will be essential for successful clinical implementation of these interventions. Overall, understanding and harnessing the gut microbiota-immune system interplay offer promising avenues for improving digestive and immunological health.
RESUMO
X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive iron-glycol chitosan-polypyrrole nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with potentially high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.
RESUMO
Carbohydrate-protein interactions play fundamental roles in numerous aspects of biological activities, and the search for new carbohydrate (CHO)-binding proteins (CBPs) has long been a research focus. In this study, through the analysis of CBP structures, we identified significant enrichment of aromatic residues in CHO-binding regions. We further summarized the structural features of these aromatic rings within the CHO-stacking region, namely "exposing" and "proximity" features, and developed a screening algorithm that can identify CHO-stacking Trp (tryptophan) residues based on these two features. Our Trp screening algorithm can achieve high accuracy in both CBP (specificity score 0.93) and CBS (Carbohydrate binding site, precision score 0.77) prediction using experimentally determined protein structures. We also applied our screening algorithm on AlphaGO pan-species predicted models and observed significant enrichment of carbohydrate-related functions in predicted CBP candidates across different species. Moreover, through carbohydrate arrays, we experimentally verified the CHO-binding ability of four candidate proteins, which further confirms the robustness of the algorithm. This study provides another perspective on proteome-wide CBP and CBS prediction. Our results not only help to reveal the structural mechanism of CHO-binding, but also provide a pan-species CBP dataset for future CHO-protein interaction exploration.
RESUMO
Background: The emergence of ESBLs producing cephalosporin-resistant Escherichia coli isolates poses a threat to public health. This study aims to decipher the genetic landscape and gain insights into ESBL-producing E. coli strains belonging to the high-risk clone ST410 from pediatric patients. Methods: 29 E. coli ST410 isolates were collected from young children and subjected to antimicrobial susceptibility testing, Whole-genome sequencing (WGS), serotype analysis, MLST, ESBL genes, virulence genes, and plasmid profiling. Results: Antimicrobial susceptibility testing demonstrated a high level of resistance to cephalosporins followed by aminoglycoside, sulfonamide, carbapenem and penicillin group of antibiotics. However, n=20/29 shows MDR phenotype. Phylogenetic group B2 (n=15) dominated, followed by group D (n=7), group A (n=4), and group B1 (n=3). Serotyping analysis identified O1:H7 (n=8), O2:H1 (n=6), O8:H4 (n=5), O16:H5 (n=4), and O25:H4 (n=3). Other serotypes identified included O6:H1, O15:H5, and O18:H7 (n=1 each). The most commonly detected ESBL genes were bla CTX-M, (n=26), followed by bla TEM (n=23), and bla SHV (n=18). Additionally, bla OXA-1 (n=10), bla OXA-48 (n=5), bla KPC-2 (n=3), bla KPC-3 (n=2), bla NDM-1 (n=4), bla NDM-5 (n=1), bla GES-1 (n=2), bla GES-5 (n=1), and bla CYM-1 (n=3). Notable virulence genes identified within the ST410 isolates included fimH (n=29), papC (n=24), hlyA (n=22), and cnf1 (n=18), among others. Diverse plasmids were observed including IncFIS, IncX4, IncFIA, IncCol, IncI2 and IncFIC with transmission frequency ranges from 1.3X10-2 to 2.7X10-3. Conclusion: The ST410 clone exhibited a complex resistance profile, diverse serotypes, the presence of specific resistance genes (ESBL genes), virulence gene repertoire, and diverse plasmids. The bla CTX-M was the most prevalent ESBL gene detected.
Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos , Fatores de Virulência , Sequenciamento Completo do Genoma , beta-Lactamases , Humanos , beta-Lactamases/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , China/epidemiologia , Pré-Escolar , Antibacterianos/farmacologia , Lactente , Fatores de Virulência/genética , Plasmídeos/genética , Sorogrupo , Masculino , Criança , Feminino , Farmacorresistência Bacteriana Múltipla/genética , Sorotipagem , GenótipoRESUMO
Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-ß1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-ß1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.
Assuntos
Linfócitos T CD8-Positivos , Colesterol , Neoplasias Colorretais , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Animais , Colesterol/metabolismo , Camundongos , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta1/metabolismo , Memória Imunológica , ATPases Vacuolares Próton-Translocadoras/metabolismo , Microambiente Tumoral/imunologia , Receptores X do Fígado/metabolismo , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Pirrolidinas/farmacologia , Proteína Smad3/metabolismo , Camundongos Endogâmicos C57BL , Carbamatos/farmacologiaRESUMO
BACKGROUND: Castration-resistant prostate cancer (CRPC) represents one type of advanced prostate cancer (PCa) with a median survival time of 1-2 years. Currently, there is a lack of reliable gene panels in predicting hormone treatment (HT) responses due to limited knowledge of CRPC-specific tumor-microenvironment (TME) characteristics. METHODS: In this study, we first screened for up-regulated genes in CRPC samples using bulk-sequencing data retrieved from TCGA online database, and further investigated the expression status of these genes in four sets of downloaded single-cell RNA sequencing (scRNAseq) data: GSE117403 containing 16 normal human prostate samples; GSE141445 containing 13 PCa samples; GSE176031 containing 11 PCa samples and GSE137829 containing 6 CRPC samples. RESULTS: We identified a series of CRPC-specific TME characteristics including an enriched number of PEG10+ neuroendocrine cells, elevated expression of PPIB/CCDC74A/GAPDH/AR genes in tumor cells, increased expression of FAP/TGFB1 in cancer-associated fibroblasts (CAFs), suppressed immune environment featured by enhanced M2 macrophage polarization, T cell exhaustion and increased number of regulatory B cells. We further established a 12-gene panel using these characteristics and showed that this panel could separate CRPC samples from PCa samples (AUC of 0.78), and CRPC patients with higher panel scores tended to have treatment failure or progression (R = -0.47, p = 0.019). CONCLUSIONS: Based on these unique TME characteristics of CRPC, we established a prediction tool for estimating the duration of HT responses in PCa treatment. Our results suggest mechanisms by which prostate cancer becomes castrate resistant. Further study of PEG10 (and/or others) to evaluate therapeutic efficacy should be considered.
Increased number of PEG10+ neuroendocrine cells is associated with recurrence of HT PCa patientsA 12-gene panel could be used to predict duration of HT responses in PCa treatment.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Bases de Dados Factuais , Macrófagos , Exaustão das Células T , Hormônios , Microambiente Tumoral/genéticaRESUMO
Aim: Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe and difficult-to-treat infections in humans and animals. We aimed to identify the predominant lineages of methicillin-resistant S. aureus in Himachal Pradesh, India, to understand the genomic epidemiology along with the genotypic and phenotypic characteristics. Methods: We isolated 250 S. aureus from two district hospitals in Himachal Pradesh, India. Methicillin-Resistant S. aureus (MRSA) isolates were subjected to MLST, SCCmec typing, and resistance as well as virulence determinants were determined by PCR and sequencing. Bio-typing was also performed for source tracking. Results: A 17.6% (44/250) of isolates were classified as MRSA by both the MRSA detection kit and disc diffusion methods. Antimicrobial Susceptibility Testing of MRSA isolates (n = 44) showed high resistance to oxacillin (77.27%), erythromycin (77.27%), tetracycline (75%), cefoxitin (65.9%), and gentamicin (61.36%), while low resistance was observed for teicoplanin (36.36%), vancomycin and levofloxacin (31.81%) and fusidic acid (18.18%). All isolates were sensitive to linezolid, quinupristin-dulfopristin, dalbavancin, and cefazoline. The SCCmec-II was observed in 20.45% of isolates, SCCmec-I in 11.36%, SCCmec-III in 9%, SCCmec-IV in 40.9% and SCCmec-V in 18.18%. The mecA gene was present in all isolates (n = 44) and 50% also had the vanA gene. 35% of isolates had the lukS-PV/lukf-PV toxin gene and 11.36% had the co-existence of mecA, vanA, and lukS-PV/lukf-PV. The major strain was ST398 (39%) followed by ST239 (27%), ST217 (16%), ST121 (11%), and ST338 (7%). The MRSA isolates produced staphylokinase and ß-hemolysis but were negative for bovine plasma coagulation tests. In Conclusion: The predominant MRSA clones in Himachal Pradesh, India, were hospital-associated multi-drug resistant-MRSA ST239 with PVL and community-associated MRSA ST398.
RESUMO
The CD47/PD-L1 antibodies combination exhibits durable antitumor immunity but also elicits excessive immune-related adverse events (IRAEs) caused by the on-target off-tumor immunotoxicity, hindering their clinical benefits greatly. Here, a microfluidics-enabled nanovesicle using ultra-pH-sensitive polymer mannose-poly(carboxybetaine methacrylate)-poly(hydroxyethyl piperidine methacrylate) (Man-PCB-PHEP) is developed to deliver CD47/PD-L1 antibodies (NCPA) for tumor-acidity-activated immunotherapy. The NCPA can specifically release antibodies in acidic environment, thereby stimulating the phagocytosis of bone marrow-derived macrophages. In mice bearing Lewis lung carcinoma, NCPA shows significantly improved intratumoral CD47/PD-L1 antibodies accumulation, promoted tumor-associated macrophages remodeling to antitumoral status, and increased infiltration of dendritic cells and cytotoxic T lymphocytes, resulting in more favorable treatment effect compared to those of free antibodies. Additionally, NCPA also shows less IRAEs, including anemia, pneumonia, hepatitis, and small intestinal inflammation in vivo. Altogether, a potent dual checkpoint blockade immunotherapy utilizing NCPA with enhanced antitumor immunity and reduced IRAEs is demonstrated.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Anticorpos , Antígeno B7-H1 , Antígeno CD47 , Microfluídica , HumanosRESUMO
Introduction: The emergence of multidrug-resistant Pseudomonas aeruginosa poses a global threat, but the distribution and resistance profiling are unclear, especially in young children. Infections due to P. aeruginosa are common, associated with high mortality, and increasingly ß-lactam drug resistant. Methods: We studied the molecular epidemiology and antibiotic resistance mechanisms in 294 clinicalisolates of P. aeruginosa from a pediatric hospital in China. Non-duplicate isolates were recovered from clinical cases and were identified using an API-20 kit followed by antimicrobial susceptibility testing using the VITEK®2 compact system (BioMerieux, France) and also by broth dilution method. In addition, a double-disc synergy test for the ESBL/E-test for MBL was performed. The presence of beta-lactamases, plasmid types, and sequence types was determined by PCR and sequencing. Results: Fifty-six percent (n = 164) of the isolates were resistant to piperacillin-tazobactam, followed by cefepime (40%; n = 117), ceftazidime (39%; n = 115), imipenem (36%; n = 106), meropenem (33%; n = 97), and ciprofloxacin (32%; n = 94). Forty-two percent (n = 126) of the isolates were positive for ESBL according to the double-disc synergy test. The blaCTX-M-15 cephalosporinase was observed in 32% (n = 40/126), while 26% (n = 33/126) werepositive for blaNDM-1 carbapenemase. Aminoglycoside resistance gene aac(3)IIIawas observed in 16% (n = 20/126), and glycylcyclines resistance gene tet(A) was observed in 12% (n = 15/126) of the isolates. A total of 23 sequence types were detected, including ST1963 (12%; n = 16), followed by ST381 (11%; n = 14), ST234 (10%; n = 13), ST145 (58%; n = 10), ST304 (57%; n = 9), ST663 (5%; n = 7), and a novel strain. In ESBL-producing P. aeruginosa, 12 different Incompatibility groups (Inc) were observed, the most common being IncFI, IncFIS, and IncA/C. The MOBP was the most common plasmid type, followed by MOBH, MOBF, and MOBQ. Discussion: Our data suggest that the spread of antibiotic resistance is likely due toclonal spread and dissemination of different clinical strains of P. aeruginosa harbouring different plasmids. This is a growing threat in hospitals particularly in young children which needs robust prevention strategies.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Criança , Pré-Escolar , Pseudomonas aeruginosa/genética , Epidemiologia Molecular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/uso terapêutico , Ceftazidima , Genômica , Células Clonais , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/tratamento farmacológicoRESUMO
Introduction: Bone metastasis (BoM) occurs when cancer cells spread from their primary sites to a bone. Currently, the mechanism underlying this metastasis process remains unclear. Methods: In this project, through an integrated analysis of bulk-sequencing and single-cell RNA transcriptomic data, we explored the BoM-related features in tumor microenvironments of different tumors. Results: We first identified 34 up-regulated genes during the BoM process in breast cancer, and further explored their expression status among different components in the tumor microenvironment (TME) of BoM samples. Enriched EMP1+ fibroblasts were found in BoM samples, and a COL3A1-ADGRG1 communication between these fibroblasts and cancer cells was identified which might facilitate the BoM process. Moreover, a significant correlation between EMP1 and COL3A1 was identified in these fibroblasts, confirming the potential connection of these genes during the BoM process. Furthermore, the existence of these EMP1+/COL3A1+ fibroblasts was also verified in prostate cancer and renal cancer BoM samples, suggesting the importance of these fibroblasts from a pan-cancer perspective. Discussion: This study is the first attempt to investigate the relationship between fibroblasts and BoM process across multi-tumor TMEs. Our findings contribute another perspective in the exploration of BoM mechanism while providing some potential targets for future treatments of tumor metastasis.
Assuntos
Neoplasias Ósseas , Carcinoma de Células Renais , Neoplasias Renais , Melanoma , Segunda Neoplasia Primária , Neoplasias Cutâneas , Masculino , Humanos , Próstata , Neoplasias Renais/genética , Neoplasias Ósseas/genética , Fibroblastos , Microambiente Tumoral/genética , Colágeno Tipo IIIRESUMO
Background: Lynch syndrome (LS) is caused by a germline mutation in one of the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2) or in the EPCAM gene. The definition of Lynch syndrome is based on clinical, pathological, and genetic findings. Therefore, the identification of susceptibility genes is essential for accurate risk assessment and tailored screening programs in LS monitoring. Patients and methods: In this study, LS was diagnosed clinically in a Chinese family using Amsterdam II criteria. To further explore the molecular characteristics of this LS family, we performed whole genome sequencing (WGS) to 16 members in this family and summarized the unique mutational profiles within this family. We also used Sanger sequencing technology and immunohistochemistry (IHC) to verify some of the mutations identified in the WGS analysis. Results: We showed that mutations in mismatch repair (MMR) related genes, as well as pathways including DNA replication, base excision repair, nucleotide excision repair, and homologous recombination were enhanced in this family. Two specific variants, MSH2 (p.S860X) and FSHR (p.I265V) were identified in all five members with LS phenotypes in this family. The MSH2 (p.S860X) variant is the first reported variant in a Chinese LS family. This mutation would result in a truncated protein. Theoretically, these patients might benefit from PD-1 (Programmed death 1) immune checkpoint blockade therapy. The patients who received nivolumab in combination with docetaxel treatments are currently in good health. Conclusion: Our findings extend the mutation spectrum of genes associated with LS in MLH2 and FSHR, which is essential for future screening and genetic diagnosis of LS.
RESUMO
Purpose: The emergence of multi-drug resistant ESBL-producing E. coli poses a global health problem. In this study, we aimed to investigate the prevalence of E. coli infections and their antibiotic susceptibility profiles in paediatric clinical cases in Shenzhen, China from Jan 1, 2014, to Jan 30, 2019, while also determining temporal trends, identifying ESBL-producing strains, and recommending potential empirical antibiotic therapy options. Methods: We isolated a total of 4148 E. coli from different specimens from a single paediatric healthcare centre. Additionally, we obtained relevant demographic data from the hospital's electronic health records. Subsequently, we performed antimicrobial susceptibility testing for 8 classes of antibiotics and assessed ESBL production. Results: Out of the 4148 isolates, 2645 were from males. The highest burden of E. coli was observed in the age group of 0-1 years, which gradually declined over the five-year study period. Antimicrobial susceptibility results indicated that 82% of E. coli isolates were highly resistant to ampicillin, followed by 52.36% resistant to cefazolin and 47.46% resistant to trimethoprim/sulfamethoxazole. Notably, a high prevalence of ESBL production (49.54%) was observed among the E. coli isolates, with 60% of them displaying a multi-drug resistance phenotype. However, it is worth mentioning that a majority of the isolates remained susceptible to ertapenem and imipenem. Our findings also highlighted a decrease in E. coli infections in Shenzhen, primarily among hospitalized patients in the 0-1 year age group. However, this decline was accompanied by a considerably high rate of ESBL production and increasing resistance to multiple antibiotics. Conclusion: Our study underscores the urgent need for effective strategies to combat multi-drug resistant ESBL-producing E. coli Infections.
RESUMO
OBJECTIVES: Emergence of the plasmid-born mobile colistin resistance (mcr) gene is a growing concern in healthcare. Therefore, this study aimed to genomically characterise multidrug-resistant Escherichia coli and Klebsiella pneumoniae co-harbouring the mcr-1 and mcr-3 genes in young children. METHODS: E. coli (n = 3) and K. pneumoniae (n = 2) were collected from abdominal secretions and blood, respectively. The isolates were screened using tryptone soy broth with 4 µL/mL polymyxin-B. Growing bacteria were identified using the VITEK-2 system, matrix-assisted laser desorption/ionisation time-of-flight, and 16s RNA sequencing, followed by antibiotic susceptibility testing. Metallo-ß-lactamase (MBL) and extended-spectrum ß-lactamase (ESBL) production was also detected. Afterwards, strains were subjected to molecular screening targeting mcr variants and ESBL/MBL-encoding genes. Conjugation, pulsed-field gel electrophoresis, Southern hybridisation, multilocus sequence typing, and phylogenic group detection were performed, along with plasmid-genome sequencing and bioinformatics analysis. RESULTS: E. coli isolates (EC-19-322, 323, and 331) and K. pneumoniae isolates (KP-19-225 and 226) harboured both mcr-1 and mcr-3 genes. These strains were also found to be resistant to more than three classes of antibiotics. The conjugation experiment revealed the presence of mcr-1 and mcr-3 on a single plasmid, and the transmission frequency was 10-2 to 10-3. Both strains were found to be able to produce ESBLs and MBL. E. coli EC-19-322 and 323 were identified as ST131(O25a:H41); SP-19-331, as ST1577 (O16:H30); and K. pneumoniae, as ST231 (K2). All E. coli strains belonged to phylogenetic group B2, and the results of pulsed-field gel electrophoresis supported the multilocus sequence typing findings. CONCLUSION: This study reported the co-occurrence of mcr-1 and mcr-3 genes on a single plasmid in pathogenic ESBL/MBL-producing E. coli and K. pneumoniae isolated from young children.