Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Small ; 15(43): e1902485, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468663

RESUMO

Substantial progress has been made in applying nanotubes in biomedical applications such as bioimaging and drug delivery due to their unique architecture, characterized by very large internal surface areas and high aspect ratios. However, the biomedical applications of organic nanotubes, especially for those assembled from sequence-defined molecules, are very uncommon. In this paper, the synthesis of two new peptoid nanotubes (PepTs1 and PepTs2) is reported by using sequence-defined and ligand-tagged peptoids as building blocks. These nanotubes are highly robust due to sharing a similar structure to those of nontagged ones, and offer great potential to hold guest molecules for biomedical applications. The findings indicate that peptoid nanotubes loaded with doxorubicin drugs are promising candidates for targeted tumor cell imaging and chemo-photodynamic therapy.


Assuntos
Biomimética , Nanotubos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Peptoides/farmacologia , Fotoquimioterapia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Humanos , Ligantes , Peptoides/química
2.
Electrophoresis ; 40(9): 1314-1321, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30656700

RESUMO

The objective of this study is to explore an approach for analyzing negatively charged proteins using paper-based cationic ITP. The rationale of electrophoretic focusing the target protein with negative charges under unfavorable cationic ITP condition is to modify the electrophoretic mobility of the target protein through antigen-antibody immunobinding. Cationic ITP was performed on a paper-based analytical device that was fabricated using fiberglass paper. The paper matrix was modified with (3-aminopropyl)trimethoxysilane to minimize sample attraction to the surface for cationic ITP. Negatively charged BSA was used as the model target protein for the cationic ITP experiments. No electrophoretic mobility was observed for BSA-only samples during cationic ITP experimental condition. However, the presence of a primary antibody to BSA significantly improved the electrokinetic behavior of the target protein. Adding a secondary antibody conjugated with amine-rich quantum dots to the sample further facilitated the concentrating effect of ITP, reduced experiment time, and elevated the stacking ratio. Under our optimized experimental conditions, the cationic ITP-based paper device electrophoretically stacked 94% of loaded BSA in less than 7 min. Our results demonstrate that the technique has a broad potential for rapid and cost-effective isotachphoretic analysis of multiplex protein biomarkers in serum samples at the point of care.


Assuntos
Complexo Antígeno-Anticorpo/análise , Eletroforese/métodos , Isotacoforese/métodos , Proteínas/análise , Ácidos , Animais , Cátions , Humanos , Soroalbumina Bovina , Troponina T/sangue
3.
Arch Biochem Biophys ; 648: 27-35, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704484

RESUMO

The C-terminus mobile domain of cTnI (cTnI-MD) is a highly conserved region which stabilizes the actin-cTnI interaction during the diastole. Upon Ca2+-binding to cTnC, cTnI-MD participates in a regulatory switching that involves cTnI to switch from interacting with actin toward interacting with the Ca2+-regulatory domain of cTnC. Despite many studies targeting the cTnI-MD, the role of this region in the length-dependent activation of cardiac contractility is yet to be determined. The present study investigated the functional consequences of losing the entire cTnI-MD in cTnI(1-167) truncation mutant, as it was exchanged for endogenous cTnI in skinned rat papillary muscle fibers. The influence of cTnI-MD truncation on the extent of the N-domain of cTnC hydrophobic cleft opening and the steady-state force as a function of sarcomere length (SL), cross-bridge state, and [Ca2+] was assessed using the simultaneous in situ time-resolved FRET and force measurements at short (1.8 µm) and long (2.2 µm) SLs. Our results show the significant role of cTnI-MD in the length dependent thin filament activation and the coupling between thin and thick filament regulations affected by SL. Our results also suggest that cTnI-MD transmits the effects of SL change to the core of troponin complex.


Assuntos
Miocárdio/metabolismo , Músculos Papilares/fisiologia , Troponina I/química , Troponina I/metabolismo , Animais , Miofibrilas/metabolismo , Músculos Papilares/metabolismo , Domínios Proteicos , Ratos , Ratos Sprague-Dawley
4.
Bioconjug Chem ; 28(10): 2581-2590, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28876897

RESUMO

Several studies have suggested that conformational dynamics are important in the regulation of thin filament activation in cardiac troponin C (cTnC); however, little direct evidence has been offered to support these claims. In this study, a dye homodimerization approach is developed and implemented that allows the determination of the dynamic equilibrium between open and closed conformations in cTnC's hydrophobic cleft. Modulation of this equilibrium by Ca2+, cardiac troponin I (cTnI), cardiac troponin T (cTnT), Ca2+-sensitizers, and a Ca2+-desensitizing phosphomimic of cTnT (cTnT(T204E) is characterized. Isolated cTnC contained a small open conformation population in the absence of Ca2+ that increased significantly upon the addition of saturating levels of Ca2+. This suggests that the Ca2+-induced activation of thin filament arises from an increase in the probability of hydrophobic cleft opening. The inclusion of cTnI increased the population of open cTnC, and the inclusion of cTnT had the opposite effect. Samples containing Ca2+-desensitizing cTnT(T204E) showed a slight but insignificant decrease in open conformation probability compared to samples with cardiac troponin T, wild type [cTnT(wt)], while Ca2+ sensitizer treated samples generally increased open conformation probability. These findings show that an equilibrium between the open and closed conformations of cTnC's hydrophobic cleft play a significant role in tuning the Ca2+ sensitivity of the heart.


Assuntos
Materiais Biomiméticos/química , Cálcio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Miocárdio/metabolismo , Troponina C/química , Troponina C/metabolismo , Troponina T/metabolismo , Modelos Moleculares , Fosfoproteínas/metabolismo , Conformação Proteica
5.
Arch Biochem Biophys ; 634: 38-46, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958680

RESUMO

Ca2+-regulation of cardiac contractility is mediated through the troponin complex, which comprises three subunits: cTnC, cTnI, and cTnT. As intracellular [Ca2+] increases, cTnI reduces its binding interactions with actin to primarily interact with cTnC, thereby enabling contraction. A portion of this regulatory switching involves the mobile domain of cTnI (cTnI-MD), the role of which in muscle contractility is still elusive. To study the functional significance of cTnI-MD, we engineered two cTnI constructs in which the MD was truncated to various extents: cTnI(1-167) and cTnI(1-193). These truncations were exchanged for endogenous cTnI in skinned rat papillary muscle fibers, and their influence on Ca2+-activated contraction and cross-bridge cycling kinetics was assessed at short (1.9 µm) and long (2.2 µm) sarcomere lengths (SLs). Our results show that the cTnI(1-167) truncation diminished the SL-induced increase in Ca2+-sensitivity of contraction, but not the SL-dependent increase in maximal tension, suggesting an uncoupling between the thin and thick filament contributions to length dependent activation. Compared to cTnI(WT), both truncations displayed greater Ca2+-sensitivity and faster cross-bridge attachment rates at both SLs. Furthermore, cTnI(1-167) slowed MgADP release rate and enhanced cross-bridge binding. Our findings imply that cTnI-MD truncations affect the blocked-to closed-state transition(s) and destabilize the closed-state position of tropomyosin.


Assuntos
Actinas/química , Actinas/metabolismo , Cálcio/química , Contração Miocárdica/fisiologia , Sarcômeros/fisiologia , Troponina I/química , Troponina I/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Ligação Proteica , Domínios Proteicos , Ratos , Relação Estrutura-Atividade
6.
Photochem Photobiol Sci ; 14(4): 833-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25679960

RESUMO

A CN-free hydrocarbon fluorophore (Perylene-TPE) was synthesized as a new luminescent down-shifting (LDS) material. Its photophysical properties in both the solution state and the solid state were studied. The unity fluorescence quantum yield of Perylene-TPE observed in its solid state is considered to be from the characteristics of intramolecular energy transfer (IET) and restricted internal rotation (RIR). This is supported by the results from theoretical calculations and spectroscopic measurements. For the photovoltaic application of Perylene-TPE, a theoretical modeling study suggests that using the LDS film of Perylene-TPE may increase the output short circuit current density (Jsc) of a CdTe solar cell by 2.95%, enhance the spectral response of a CdTe solar cell at 400 nm by 41%, and shift the incident solar photon distribution from short-wavelength (<500 nm) to long-wavelength (>500 nm). Experimentally, placing a LDS film of Perylene-TPE on a CdTe solar cell can enhance its output Jsc by as high as 3.30 ± 0.31%, which is comparable to the current commercially available LDS material ­ Y083 (3.28% ± 0.37%).


Assuntos
Fontes de Energia Elétrica , Etilenos/química , Perileno/química , Energia Solar , Transferência de Energia , Etilenos/síntese química , Fluorescência , Modelos Químicos , Estrutura Molecular , Perileno/síntese química , Processos Fotoquímicos , Fótons , Rotação , Soluções , Análise Espectral
7.
Electrophoresis ; 35(14): 2029-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723384

RESUMO

Cationic ITP was used to separate and concentrate fluorescently tagged cardiac troponin I (cTnI) from two proteins with similar isoelectric properties in a PMMA straight-channel microfluidic chip. In an initial set of experiments, cTnI was effectively separated from R-Phycoerythrin using cationic ITP in a pH 8 buffer system. Then, a second set of experiments was conducted in which cTnI was separated from a serum contaminant, albumin. Each experiment took ∼10 min or less at low electric field strengths (34 V/cm) and demonstrated that cationic ITP could be used as an on-chip removal technique to isolate cTnI from albumin. In addition to the experimental work, a 1D numerical simulation of our cationic ITP experiments has been included to qualitatively validate experimental observations.


Assuntos
Biomarcadores/sangue , Isotacoforese/métodos , Albumina Sérica/isolamento & purificação , Troponina I/isolamento & purificação , Cátions , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Albumina Sérica/química , Troponina I/sangue , Troponina I/química
8.
Arch Biochem Biophys ; 550-551: 1-11, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24708997

RESUMO

FRET was used to investigate the structural and kinetic effects that PKC phosphorylations exert on Ca(2+) and myosin subfragment-1 dependent conformational transitions of the cardiac thin filament. PKC phosphorylations of cTnT were mimicked by glutamate substitution. Ca(2+) and S1-induced distance changes between the central linker of cTnC and the switch region of cTnI (cTnI-Sr) were monitored in reconstituted thin filaments using steady state and time resolved FRET, while kinetics of structural transitions were determined using stopped flow. Thin filament Ca(2+) sensitivity was found to be significantly blunted by the presence of the cTnT(T204E) mutant, whereas pseudo-phosphorylation at additional sites increased the Ca(2+)-sensitivity. The rate of Ca(2+)-dissociation induced structural changes was decreased in the C-terminal end of cTnI-Sr in the presence of pseudo-phosphorylations while remaining unchanged at the N-terminal end of this region. Additionally, the distance between cTnI-Sr and cTnC was decreased significantly for the triple and quadruple phosphomimetic mutants cTnT(T195E/S199E/T204E) and cTnT(T195E/S199E/T204E/T285E), which correlated with the Ca(2+)-sensitivity increase seen in these same mutants. We conclude that significant changes in thin filament Ca(2+)-sensitivity, structure and kinetics are brought about through PKC phosphorylation of cTnT. These changes can either decrease or increase Ca(2+)-sensitivity and likely play an important role in cardiac regulation.


Assuntos
Cálcio/metabolismo , Miofibrilas/metabolismo , Subfragmentos de Miosina/metabolismo , Proteína Quinase C/metabolismo , Troponina T/metabolismo , Substituição de Aminoácidos , Animais , Bovinos , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Cinética , Mimetismo Molecular , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Miofibrilas/genética , Subfragmentos de Miosina/genética , Fosforilação , Conformação Proteica , Proteína Quinase C/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Troponina T/genética
9.
Phys Chem Chem Phys ; 16(47): 26193-202, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25363326

RESUMO

A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.

10.
Nucleic Acids Res ; 40(11): 4804-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22328728

RESUMO

The higher order chromatin structure has recently been revealed as a critical new layer of gene transcriptional control. Changes in higher order chromatin structures were shown to correlate with the availability of transcriptional factors and/or MAR (matrix attachment region) binding proteins, which tether genomic DNA to the nuclear matrix. How posttranslational modification to these protein organizers may affect higher order chromatin structure still pending experimental investigation. The type III histone deacetylase silent mating type information regulator 2, S. cerevisiae, homolog 1 (SIRT1) participates in many physiological processes through targeting both histone and transcriptional factors. We show that MAR binding protein SATB1, which mediates chromatin looping in cytokine, MHC-I and ß-globin gene loci, as a new type of SIRT1 substrate. SIRT1 expression increased accompanying erythroid differentiation and the strengthening of ß-globin cluster higher order chromatin structure, while knockdown of SIRT1 in erythroid k562 cells weakened the long-range interaction between two SATB1 binding sites in the ß-globin locus, MAR(HS2) and MAR(ε). We also show that SIRT1 activity significantly affects ε-globin gene expression in a SATB1-dependent manner and that knockdown of SIRT1 largely blocks ε-globin gene activation during erythroid differentiation. Our work proposes that SIRT1 orchestrates changes in higher order chromatin structure during erythropoiesis, and reveals the dynamic higher order chromatin structure regulation at posttranslational modification level.


Assuntos
Regulação da Expressão Gênica , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Regiões de Interação com a Matriz , Sirtuína 1/metabolismo , Globinas épsilon/genética , Células Cultivadas , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Humanos , Células K562 , Região de Controle de Locus Gênico , Globinas beta/genética , Globinas épsilon/biossíntese
11.
Biofilm ; 7: 100183, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380422

RESUMO

Antibiotic-resistant biofilm infections have emerged as public health concerns because of their enhanced tolerance to high-dose antibiotic treatments. The biofilm life cycle involves multiple developmental stages, which are tightly regulated by active cell-cell communication via specific extracellular signal messengers such as extracellular vesicles. This study was aimed at exploring the roles of extracellular vesicles secreted by Pseudomonas aeruginosa at different developmental stages in controlling biofilm growth. Our results show that extracellular vesicles secreted by P. aeruginosa biofilms during their exponential growth phase (G-EVs) enhance biofilm growth. In contrast, extracellular vesicles secreted by P. aeruginosa biofilms during their death/survival phase (D-EVs) can effectively inhibit/eliminate P. aeruginosa PAO1 biofilms up to 4.8-log10 CFU/cm2. The inhibition effectiveness of D-EVs against P. aeruginosa biofilms grown for 96 h improved further in the presence of 10-50 µM Fe3+ ions. Proteomic analysis suggests the inhibition involves an iron-dependent ferroptosis mechanism. This study is the first to report the functional role of bacterial extracellular vesicles in bacterial growth, which depends on the developmental stage of the parent bacteria. The finding of D-EV-activated ferroptosis-based bacterial death may have significant implications for preventing antibiotic resistance in biofilms.

12.
J Biol Chem ; 287(10): 7661-74, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22207765

RESUMO

The regulatory function of cardiac troponin I (cTnI) involves three important contiguous regions within its C-domain: the inhibitory region (IR), the regulatory region (RR), and the mobile domain (MD). Within these regions, the dynamics of regional structure and kinetics of transitions in dynamic state are believed to facilitate regulatory signaling. This study was designed to use fluorescence anisotropy techniques to acquire steady-state and kinetic information on the dynamic state of the C-domain of cTnI in the reconstituted thin filament. A series of single cysteine cTnI mutants was generated, labeled with the fluorophore tetramethylrhodamine, and subjected to various anisotropy experiments at the thin filament level. The structure of the IR was found to be less dynamic than that of the RR and the MD, and Ca(2+) binding induced minimal changes in IR dynamics: the flexibility of the RR decreased, whereas the MD became more flexible. Anisotropy stopped-flow experiments showed that the kinetics describing the transition of the MD and RR from the Ca(2+)-bound to the Ca(2+)-free dynamic states were significantly faster (53.2-116.8 s(-1)) than that of the IR (14.1 s(-1)). Our results support the fly casting mechanism, implying that an unstructured MD with rapid dynamics and kinetics plays a critical role to initiate relaxation upon Ca(2+) dissociation by rapidly interacting with actin to promote the dissociation of the RR from the N-domain of cTnC. In contrast, the IR responds to Ca(2+) signals with slow structural dynamics and transition kinetics. The collective findings suggested a fourth state of activation.


Assuntos
Cálcio/química , Citoesqueleto/química , Troponina I/química , Animais , Cálcio/metabolismo , Citoesqueleto/metabolismo , Polarização de Fluorescência/métodos , Cinética , Estrutura Terciária de Proteína , Ratos , Troponina I/metabolismo
13.
Am J Physiol Renal Physiol ; 304(1): F8-F18, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23054253

RESUMO

The R1185C mutation in WNK4 is associated with pseudohypoaldosteronism type II (PHAII). Unlike other PHAII-causing mutations in the acidic motif, the R1185C mutation is located in the COOH-terminal region of WNK4. The goal of the study is to determine what properties of WNK4 are disrupted by the R1185C mutation. We found that the R1185C mutation is situated in the middle of a calmodulin (CaM) binding site and the mutation reduces the binding of WNK4 to Ca(2+)/CaM. The R1185C mutation is also close to serum- and glucocorticoid-induced protein kinase (SGK1) phosphorylation sites S1190 and S1217. In addition, we identified a novel SGK1 phosphorylation site (S1201) in WNK4, and phosphorylation at this site is reduced by Ca(2+)/CaM. In the wild-type WNK4, the level of phosphorylation at S1190 is the lowest and that at S1217 is the highest. In the R1185C mutant, phosphorylation at S1190 is eliminated and that at S1201 becomes the strongest. The R1185C mutation enhances the positive effect of WNK4 on the Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2) as tested in Xenopus laevis oocytes. Deletion of the CaM binding site or phospho-mimicking at two or three of the SGK1 sites enhances the WNK4 effects on NKCC2. These results indicate that the R1185C mutation disrupts an inhibitory domain as part of the suppression mechanism of WNK4, leading to an elevated WNK4 activity at baseline. The presence of CaM binding and SGK1 phosphorylation sites in or close to the inhibitory domain suggests that WNK4 activity is subject to the regulation by intracellular Ca(2+) and phosphorylation.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Animais , Sítios de Ligação/fisiologia , Cálcio/farmacologia , Calmodulina/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Oócitos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Xenopus laevis
14.
Arch Biochem Biophys ; 535(1): 56-67, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23246786

RESUMO

Mutations in cardiac troponin I (cTnI) that cause hypertrophic cardiomyopathy (HCM) have been reported to change the contractility of cardiac myofilaments, but the underlying molecular mechanism remains elusive. In this study, Förster resonance energy transfer (FRET) was used to investigate the specific structural and kinetic effects that HCM related rat cTnI mutations R146G/Q and R163W exert on Ca(2+) and myosin S1 dependent conformational transitions in rat cTn structure. Ca(2+)-induced changes in interactions between cTnC and cTnI were individually monitored in reconstituted thin filaments using steady state and time resolved FRET, and kinetics were determined using stopped flow. R146G/Q and R163W all changed the FRET distances between cTnC and cTnI in unique and various ways. However, kinetic rates of conformational transitions induced by Ca(2+)-dissociation were universally slowed when R146G/Q and R163W were present. Interestingly, the kinetic rates of changes in the inhibitory region of cTnI were always slower than that of the regulatory region, suggesting that the fly casting mechanism that normally underlies deactivation is preserved in spite of mutation. In situ rat myocardial fiber studies also revealed that FRET distance changes indicating mutation specific disruption of the cTnIIR-actin interaction were consistent with increased passive tension.


Assuntos
Cardiomiopatia Hipertrófica/genética , Mutação , Miofibrilas/metabolismo , Troponina I/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cisteína/genética , Cisteína/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ventrículos do Coração/metabolismo , Cinética , Masculino , Contração Muscular , Miofibrilas/genética , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Ratos , Ratos Long-Evans , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Troponina C/genética , Troponina C/metabolismo , Troponina I/genética
15.
Arch Biochem Biophys ; 537(2): 198-209, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23896515

RESUMO

The in situ structural coupling between the cardiac troponin (cTn) Ca(2+)-sensitive regulatory switch (CRS) and strong myosin cross-bridges was investigated using Förster resonance energy transfer (FRET). The double cysteine mutant cTnC(T13C/N51C) was fluorescently labeled with the FRET pair 5-(iodoacetamidoethyl)aminonaphthelene-1-sulfonic acid (IAEDENS) and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) and then incorporated into detergent skinned left ventricular papillary fiber bundles. Ca(2+) titrations of cTnC(T13C/N51C)AEDENS/DDPM-reconstituted fibers showed that the Ca(2+)-dependence of the opening of the N-domain of cTnC (N-cTnC) statistically matched the force-Ca(2+) relationship. N-cTnC opening still occurred steeply during Ca(2+) titrations in the presence of 1mM vanadate, but the maximal extent of ensemble-averaged N-cTnC opening and the Ca(2+)-sensitivity of the CRS were significantly reduced. At nanomolar, resting Ca(2+) levels, treatment with ADP·Mg in the absence of ATP caused a partial opening of N-cTnC. During subsequent Ca(2+) titrations in the presence of ADP·Mg and absence of ATP, further N-cTnC opening was stimulated as the CRS responded to Ca(2+) with increased Ca(2+)-sensitivity and reduced steepness. These findings supported our hypothesis here that strong cross-bridge interactions with the cardiac thin filament exert a Ca(2+)-sensitizing effect on the CRS by stabilizing the interaction between the exposed hydrophobic patch of N-cTnC and the switch region of cTnI.


Assuntos
Cálcio/química , Cálcio/metabolismo , Contração Miocárdica/fisiologia , Miosinas/metabolismo , Sarcômeros/fisiologia , Troponina C/química , Troponina C/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Retroalimentação Fisiológica/fisiologia , Mecanotransdução Celular/fisiologia , Miosinas/química , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Relação Estrutura-Atividade
16.
Anal Biochem ; 432(2): 106-14, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23000602

RESUMO

A rapid assay operable under isothermal or nonisothermal conditions is described, where the sensitivity of a typical molecular beacon (MB) system is improved by using thermostable RNase H to enzymatically cleave an MB composed of a DNA stem and an RNA loop (R/D-MB). On hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7× above background) due to an opening of the probe and a concomitant reduction in the Förster resonance energy transfer efficiency. The addition of thermostable RNase H resulted in the cleavage of the RNA loop, which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9× above background), resulting in an approximately 2- to 2.8-fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time polymerase chain reactions by measuring enhancement of donor fluorescence on R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods.


Assuntos
DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ácidos Nucleicos/análise , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , DNA/química , Sondas de DNA/química , Sondas de DNA/metabolismo , Corantes Fluorescentes/química , Hibridização de Ácido Nucleico , RNA/química , Ribonuclease H/metabolismo , Razão Sinal-Ruído , Temperatura
17.
J Fluoresc ; 21(6): 2101-10, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21647606

RESUMO

Human cardiac troponin I (hcTnI) and troponin T (hcTnT) are the biomarkers of choice for the diagnosis of cardiac diseases. In an effort to improve assay sensitivity, in this study we developed a novel approach to simultaneously detect hcTnI and hcTnT in homogenous solutions by monitoring enhanced-fluorescence-anisotropy changes. Specifically, our design was based on a competition assay by measuring anisotropy change of fluorophore-labeled peptides bound to primary monoclonal antibodies in the presence of nano-gold-modified secondary antibody in response to the presence of target proteins. Enhanced-fluorescence-anisotropy resulted from interaction between the primary antibody and the nano-gold-labeled secondary antibody, which significantly increased the size and decreased tumbling motion of the complex of peptide-antibodies. The measurements were performed to detect hcTnI and hcTnT either individually or simultaneously in a homogenous buffer solution and in the solutions containing human plasma. Our results showed that when fluorescence emission was monitored at a single wavelength selected by a monochromator the assay at all experimental conditions had excellent linear response to the target proteins within the concentration range of 0.5-40 nM. The detection limit is 0.5 nM for both hcTnI and hcTnT in the presence of human plasma. However, when fluorescence emission was monitored using a cutoff filter, the linear response of the assay to the target proteins is within 15-500 pM. The detection limit is 15 pM which is close to the recommended 99th percentile cutoff point for concentrations of hcTnI and hcTnT tests to discriminate healthy and diseased conditions. Homogenous nature, rapid response time, and easy implementation of our assay design make it a useful tool for disease biomarker and protein sensing.


Assuntos
Fluorescência , Troponina I/sangue , Troponina T/sangue , Anisotropia , Anticorpos Monoclonais/imunologia , Biomarcadores/sangue , Humanos , Sensibilidade e Especificidade , Espectrometria de Fluorescência , Troponina I/imunologia , Troponina T/imunologia
18.
Biosensors (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34940275

RESUMO

Exosomes, powerful extracellular nanovesicles released from almost all types of living cells, are considered the communication engines (messengers) that control and reprogram physiological pathways inside target cells within a community or between different communities. The cell-like structure of these extracellular vesicles provides a protective environment for their proteins and DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and development. In addition to the unique structure of exosomes, their nanometer size and tendency of interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis, monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about the prospects of the current exosome research.


Assuntos
Exossomos , Neoplasias , Biomarcadores , Comunicação Celular , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/diagnóstico , Proteínas
19.
Stem Cell Res ; 48: 101937, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763824

RESUMO

We have generated PUMCi001-A, an induced pluripotent stem cells (iPSC) line from dermal fibroblasts of a 13-year-old male Krabbe disease patient with two hemizygous (461C > A and 1244G > A) mutations in Galactocerebrosidase (GALC) gene using a Sendai viral delivery of OCT4, SOX2, KLF4, and c-MYC. The PUMCi001-A iPSC line carried the GALC mutations, displayed typical iPSC morphology, expressed pluripotent stem cell makers, exhibited a normal karyotype and differentiation capacity into three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucodistrofia de Células Globoides , Adolescente , Diferenciação Celular , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Leucodistrofia de Células Globoides/genética , Masculino , Vírus Sendai
20.
Biosens Bioelectron ; 164: 112292, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32479339

RESUMO

Exosomes derived from cancer cells/tissues have great potential for early cancer diagnostic use, but their clinical potential has not been fully explored because of a lack of cost-effective multiplex approaches capable of effectively isolating and identifying specific exosome populations and analyzing their content biomarkers. This study was aimed at overcoming the technical barrier by developing a paper-based isotachophoresis (ITP) technology capable of 1) rapid isolation and identification of exosomes from both malignant and healthy cells and 2) multiplex detection of selected exosomal protein biomarkers of the target exosomes. The technology integrates the focusing power of ITP and the multiplex capability of paper-based lateral flow to achieve on-board separation of target exosomes from large extracellular vesicles, followed by electrokinetic enrichment of the targets, leading to an ultrasensitive platform for comprehensive exosome analysis. For a proof of concept, the technology platform was tested with human serum samples spiked with exosomes derived from healthy human serum and a prostate cancer cell line. Under an anionic ITP condition, the device showed superior performance in simultaneous detection of the cancer exosomes and normal exosomes at concentrations as low as 1.2-2.0 × 106 exosomes/mL, which is equivalent to 2.0-3.0 × 10-18 M. The observed limit of detection was more than 30-fold better than that of enhanced ELISA. More importantly, in a subsequent step the technology was capable of the rapid profiling of a selected protein biomarker panel associated with the target exosomes. The results represent a significant step toward translating the detection of tumor-derived exosomes to a medical use at a point of care.


Assuntos
Técnicas Biossensoriais , Exossomos , Isotacoforese , Neoplasias da Próstata , Biomarcadores , Humanos , Masculino , Neoplasias da Próstata/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA