Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2013: 636912, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23983643

RESUMO

Four methods based on a multimode interference (MMI) structure are optimally designed to flatten the spectral response of silicon-on-insulator- (SOI-) based arrayed-waveguide grating (AWG) applied in a demodulation integration microsystem. In the design for each method, SOI is selected as the material, the beam propagation method is used, and the performances (including the 3 dB passband width, the crosstalk, and the insertion loss) of the flat-top AWG are studied. Moreover, the output spectrum responses of AWGs with or without a flattened structure are compared. The results show that low insertion loss, crosstalk, and a flat and efficient spectral response are simultaneously achieved for each kind of structure. By comparing the four designs, the design that combines a tapered MMI with tapered input/output waveguides, which has not been previously reported, was shown to yield better results than others. The optimized design reduced crosstalk to approximately -21.9 dB and had an insertion loss of -4.36 dB and a 3 dB passband width, that is, approximately 65% of the channel spacing.


Assuntos
Silício/química , Análise Espectral/métodos , Integração de Sistemas
2.
Sci Rep ; 4: 4848, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24797561

RESUMO

An arrayed waveguide grating (AWG) demodulation integration microsystem is investigated in this study. The system consists of a C-band on-chip LED, a 2 × 2 silicon nanowire-based coupler, a fiber Bragg grating (FBG) array, a 1 × 8 AWG, and a photoelectric detector array. The coupler and AWG are made from silicon-on-insulator wafers using electron beam exposure and response-coupled plasma technology. Experimental results show that the excess loss in the MMI coupler with a footprint of 6 × 100 µm(2) is 0.5423 dB. The 1 × 8 AWG with a footprint of 267 × 381 µm(2) and a waveguide width of 0.4 µm exhibits a central channel loss of -3.18 dB, insertion loss non-uniformity of -1.34 dB, and crosstalk level of -23.1 dB. The entire system is preliminarily tested. Wavelength measurement precision is observed to reach 0.001 nm. The wavelength sensitivity of each FBG is between 0.04 and 0.06 nm/dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA