Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 40(5): 1427-1434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38231402

RESUMO

PURPOSE: Hirayama disease, a rare cervical myelopathy in children and young adults, leads to progressive upper limb weakness and muscle loss. Non-invasive external cervical orthosis has been shown to prevent further neurologic decline; however, this treatment modality has not been successful at restoring neurologic and motor function, especially in long standing cases with significant weakness. The pathophysiology remains not entirely understood, complicating standardized operative guidelines; however, some studies report favorable outcomes with internal fixation. We report a successful surgically treated case of pediatric Hirayama disease, supplemented by a systematic review and collation of reported cases in the literature. METHODS: A review of the literature was performed by searching PubMed, Embase, and Web of Science. Full-length articles were included if they reported clinical data regarding the treatment of at least one patient with Hirayama disease and the neurologic outcome of that treatment. Articles were excluded if they did not provide information on treatment outcomes, were abstract-only publications, or were published in languages other than English. RESULTS: Of the fifteen articles reviewed, 63 patients were described, with 59 undergoing surgery. This encompassed both anterior and posterior spinal procedures and 1 hand tendon transfer. Fifty-five patients, including one from our institution, showed improvement post-treatment. Eleven of these patients were under 18 years old. CONCLUSION: Hirayama disease is an infrequent yet impactful cervical myelopathy with limited high-quality evidence available for optimal treatment. The current literature supports surgical decompression and stabilization as promising interventions. However, comprehensive research is crucial for evolving diagnosis and treatment paradigms.


Assuntos
Vértebras Cervicais , Discotomia , Fusão Vertebral , Atrofias Musculares Espinais da Infância , Humanos , Atrofias Musculares Espinais da Infância/cirurgia , Fusão Vertebral/métodos , Vértebras Cervicais/cirurgia , Discotomia/métodos , Masculino , Adolescente , Criança , Resultado do Tratamento
2.
Childs Nerv Syst ; 40(8): 2333-2344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702518

RESUMO

INTRODUCTION: Focused ultrasound (FUS) is an innovative and emerging technology for the treatment of adult and pediatric brain tumors and illustrates the intersection of various specialized fields, including neurosurgery, neuro-oncology, radiation oncology, and biomedical engineering. OBJECTIVE: The authors provide a comprehensive overview of the application and implications of FUS in treating pediatric brain tumors, with a special focus on pediatric low-grade gliomas (pLGGs) and the evolving landscape of this technology and its clinical utility. METHODS: The fundamental principles of FUS include its ability to induce thermal ablation or enhance drug delivery through transient blood-brain barrier (BBB) disruption, emphasizing the adaptability of high-intensity focused ultrasound (HIFU) and low-intensity focused ultrasound (LIFU) applications. RESULTS: Several ongoing clinical trials explore the potential of FUS in offering alternative therapeutic strategies for pathologies where conventional treatments fall short, specifically centrally-located benign CNS tumors and diffuse intrinsic pontine glioma (DIPG). A case illustration involving the use of HIFU for pilocytic astrocytoma is presented. CONCLUSION: Discussions regarding future applications of FUS for the treatment of gliomas include improved drug delivery, immunomodulation, radiosensitization, and other technological advancements.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Criança , Glioma/terapia , Glioma/diagnóstico por imagem , Terapia por Ultrassom/métodos
3.
Sci Data ; 11(1): 62, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200013

RESUMO

Minimally invasive spine surgery (MISS) is increasingly performed using endoscopic and microscopic visualization, and the captured video can be used for surgical education and development of predictive artificial intelligence (AI) models. Video datasets depicting adverse event management are also valuable, as predictive models not exposed to adverse events may exhibit poor performance when these occur. Given that no dedicated spine surgery video datasets for AI model development are publicly available, we introduce Simulated Outcomes for Durotomy Repair in Minimally Invasive Spine Surgery (SOSpine). A validated MISS cadaveric dural repair simulator was used to educate neurosurgery residents, and surgical microscope video recordings were paired with outcome data. Objects including durotomy, needle, grasper, needle driver, and nerve hook were then annotated. Altogether, SOSpine contains 15,698 frames with 53,238 annotations and associated durotomy repair outcomes. For validation, an AI model was fine-tuned on SOSpine video and detected surgical instruments with a mean average precision of 0.77. In summary, SOSpine depicts spine surgeons managing a common complication, providing opportunities to develop surgical AI models.


Assuntos
Inteligência Artificial , Modelos Anatômicos , Humanos , Escolaridade , Coluna Vertebral/cirurgia
4.
Artigo em Inglês | MEDLINE | ID: mdl-39028480

RESUMO

PURPOSE: Lumbar discectomy is among the most common spine procedures in the US, with 300,000 procedures performed each year. Like other surgical procedures, this procedure is not excluded from potential complications. This paper presents a video annotation methodology for microdiscectomy including the development of a surgical workflow. In future work, this methodology could be combined with computer vision and machine learning models to predict potential adverse events. These systems would monitor the intraoperative activities and possibly anticipate the outcomes. METHODS: A necessary step in supervised machine learning methods is video annotation, which involves labeling objects frame-by-frame to make them recognizable for machine learning applications. Microdiscectomy video recordings of spine surgeries were collected from a multi-center research collaborative. These videos were anonymized and stored in a cloud-based platform. Videos were uploaded to an online annotation platform. An annotation framework was developed based on literature review and surgical observations to ensure proper understanding of the instruments, anatomy, and steps. RESULTS: An annotated video of microdiscectomy was produced by a single surgeon. Multiple iterations allowed for the creation of an annotated video complete with labeled surgical tools, anatomy, and phases. In addition, a workflow was developed for the training of novice annotators, which provides information about the annotation software to assist in the production of standardized annotations. CONCLUSIONS: A standardized workflow for managing surgical video data is essential for surgical video annotation and machine learning applications. We developed a standard workflow for annotating surgical videos for microdiscectomy that may facilitate the quantitative analysis of videos using supervised machine learning applications. Future work will demonstrate the clinical relevance and impact of this workflow by developing process modeling and outcome predictors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA